三维坐标下判断P点是否在三角形ABC中

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了三维坐标下判断P点是否在三角形ABC中相关的知识,希望对你有一定的参考价值。

在网上找的都是二位坐标下的,我写个三维的吧

1.面积法

  同二位坐标下一样,只需要判断三角形ABC的面积是否等于S_ABP+S_BCP+S_ACP。当然此方法需要开好几个根,不仅效率很低,还会损失精度,所以我使用的输入类型是int,并把误差控制到10E(-8)。里面还用到了一点向量的知识,但很好理解。代码如下:

  1 #include<iostream>
  2 #include<cmath>
  3 #include<stdlib.h>
  4 using namespace std;
  5 class Point
  6 {
  7 private:
  8     int  x;
  9     int  y;
 10     int  z;
 11 public:
 12     void Setxyz(int x,int y, int z)
 13     {
 14         this->x = x;
 15         this->y = y;
 16         this->z = z;
 17     }
 18     int Getx(void) { return x; }
 19     int Gety(void) { return y; }
 20     int Getz(void) { return z; }
 21 };
 22 class Vector3
 23 {
 24 private:
 25     int x;
 26     int y;
 27     int z;
 28 public:
 29     void Setx(int x) { this->x = x; }
 30     void Sety(int y) { this->y = y; }
 31     void Setz(int z) { this->z = z; }
 32     int Getx(void) { return x; }
 33     int Gety(void) { return y; }
 34     int Getz(void) { return z; }
 35 };
 36 Vector3 toVector3(Point M, Point N)
 37 {
 38     Vector3 MN;
 39     MN.Setx(N.Getx() - M.Getx());
 40     MN.Sety(N.Gety() - M.Gety());
 41     MN.Setz(N.Getz() - M.Getz());
 42     return MN;
 43 }
 44 bool isTri(Point A, Point B, Point C)
 45 {
 46     Vector3 AB = toVector3(A, B);
 47     Vector3 BC = toVector3(B, C);
 48     if ((BC.Getx()*AB.Gety() == AB.Getx()*BC.Gety()) &&
 49         (BC.Getx()*AB.Getz() == AB.Getx()*BC.Getz()))
 50         return 0;
 51     else
 52         return 1;
 53 }
 54 double  Distance(Point M, Point N)
 55 {
 56     Vector3 MN;
 57     MN = toVector3(M, N);
 58     double Dis_MN = sqrt((double)(MN.Getx()*MN.Getx ()+ MN.Gety()*MN.Gety() + MN.Getz()*MN.Getz()));
 59     return Dis_MN;
 60 }
 61 double S(Point A,Point B,Point C)
 62 {
 63     double c = Distance(A,B);
 64     double b= Distance(A, C);
 65     double a= Distance(B, C);
 66     double p = (a+b+c)/2;
 67     double s = sqrt(p*(p - a)*(p - b)*(p - c));//海伦公式
 68     return s;
 69 }
 70 bool PointInTri(Point A, Point B, Point C, Point P)
 71 {
 72     double S1 = S(A, B, C);
 73     double S2 = S(A, B, P);
 74     double S3 = S(B, C, P);
 75     double S4 = S(A, C, P);
 76     if (abs(S1 -(S2 + S3 + S4))<=pow(10,-8))//因为有精度损失
 77         return 1;
 78     else
 79         return 0;
 80 }
 81 
 82 int main(void)
 83 {
 84     Point A, B, C, P;
 85     int Ax, Ay, Az;
 86     int Bx, By, Bz;
 87     int Cx, Cy, Cz;
 88     int Px, Py, Pz;
 89     cout << "请输入ABC三个点成三角形(必须是整数型)\\n" << endl;
 90     while (1)
 91     {
 92         cout << "A点坐标:" << endl;
 93         cin >> Ax >> Ay >> Az;
 94         A.Setxyz(Ax, Ay, Az);
 95         cout << "B点坐标:" << endl;
 96         cin >> Bx >> By >> Bz;
 97         B.Setxyz(Bx, By, Bz);
 98         cout << "C点坐标:" << endl;
 99         cin >> Cx >> Cy >> Cz;
100         C.Setxyz(Cx, Cy, Cz);
101         if (isTri(A, B, C))
102         {
103             cout << "P点坐标:" << endl;
104             cin >> Px >> Py >> Pz;
105             P.Setxyz(Px, Py, Pz);
106             if (PointInTri(A, B, C, P))
107                 cout << "点P在三角形ABC内" << endl;
108             else
109                 cout << "点P在三角形ABC外" << endl;
110         }
111         else
112             cout << "ABC三点一线,组不成三角形" << endl;
113         cout << "输入q退出,输入c继续" << endl;
114         char Sign;
115         cin >> Sign;
116         if (Sign == q)break;
117     }
118     system("pause");
119     return 0;
120 }

2.向量法

  先考虑ABCP四点共面,如下图:(我是知识的搬运工。。。)

技术分享

然后我们再考虑如何判断四点共面:求出AB与AC的叉积,再判断AP与叉积是否垂直,即点积是否为0

#include<iostream>
#include<stdlib.h>
using namespace std;
class Point
{
private:
    double x;
    double y;
    double z;
public:
    void Setxyz(double x,double y,double z)
    { 
        this->x = x; 
        this->y = y; 
        this->z = z;
    }
    double Getx(void) { return x; }
    double Gety(void) { return y; }
    double Getz(void) { return z; }
};
class Vector3
{
private:
    double x;
    double y;
    double z;
public:
    void Setx(double x) { this->x = x; }
    void Sety(double y) { this->y = y; }
    void Setz(double z) { this->z = z; }
    double Getx(void)   { return x; }
    double Gety(void)   { return y; }
    double Getz(void)   { return z; }
    Vector3 Cross(Vector3 b)//向量积,即叉乘
    {
        Vector3 aCrob;
        aCrob.x = this->y*b.z - b.y*this->z;
        aCrob.y = this->z*b.x - b.z*this->x;
        aCrob.z = this->x*b.y - b.x*this->y;
        return aCrob;
    }
    double Dot(Vector3 a)//向量点乘
    {
        return this->x*a.x + this->y*a.y + this->z*a.z;
    }
};
Vector3 toVector3(Point M, Point N)
{
    Vector3 MN;
    MN.Setx(N.Getx() - M.Getx());
    MN.Sety(N.Gety() - M.Gety());
    MN.Setz(N.Getz() - M.Getz());
    return MN;
}
bool Side(Point A,Point B, Point C, Point P)//是否在同一侧
{
    Vector3 AB = toVector3(A,B);
    Vector3 AC = toVector3(A,C);
    Vector3 AP = toVector3(A,P);
    Vector3 a1 = AB.Cross(AC);
    Vector3 a2 = AB.Cross(AP);
    return a1.Dot(a2)>=0;
}
bool PointInTri(Point A, Point B, Point C, Point P)
{
    return Side(A, B, C, P) && Side(B, C, A, P) && Side(C, A, B, P);
}
bool isSnameDirction(Vector3 AB, Vector3 BC)
{
    if ((BC.Getx()*AB.Gety() == AB.Getx()*BC.Gety()) &&
        (BC.Getx()*AB.Getz() == AB.Getx()*BC.Getz()))
        return 1;
    else
        return 0;
}
bool isSnamePlane(Point A, Point B, Point C, Point P)
{
    Vector3 AB = toVector3(A, B);
    Vector3 AC = toVector3(A, C);
    Vector3 AP = toVector3(A, P);
    Vector3 n1 = AB.Cross(AC);
    int flag;
    flag = AP.Dot(n1);//两向量垂直时为0
    if (flag==0)
        return 1;
    else
        return 0;
}
bool isTri(Point A, Point B, Point C)
{
    Vector3 AB = toVector3(A, B);
    Vector3 BC = toVector3(B, C);
    if (isSnameDirction(AB, BC))
        return 0;
    else
        return 1;
}
int main(void)
{
    /*
    绝对值小的double类型值不断相乘会发生精度遗失
    比如A(0,0,0) B(0,1,0) C(1,0,0)
        P(0.1,0.1,0.01)
    建议输入整型
    */
    Point A, B, C, P;
    double Ax, Ay, Az;
    double Bx, By, Bz;
    double Cx, Cy, Cz;
    double Px, Py, Pz;
    cout<< "请输入ABC三个点成三角形\\n" << endl;
    while (1)
    {
        cout << "A点坐标:" << endl;
        cin >> Ax >> Ay >> Az;
        A.Setxyz(Ax, Ay, Az);
        cout << "B点坐标:" << endl;
        cin >> Bx >> By >> Bz;
        B.Setxyz(Bx, By, Bz);
        cout << "C点坐标:" << endl;
        cin >> Cx >> Cy >> Cz;
        C.Setxyz(Cx, Cy, Cz);
        if (isTri(A, B, C))
        {
            cout << "P点坐标:" << endl;
            cin >> Px >> Py >> Pz;
            P.Setxyz(Px, Py, Pz);
            if (isSnamePlane(A, B, C, P))
            {
                if (PointInTri(A, B, C, P))
                    cout << "点P在三角形ABC内" << endl;
                else
                    cout << "点P在三角形ABC外" << endl;
            }
            else
                cout << "点P都ABC所确定的平面,更不可能在三角形ABC内" << endl;
        }
        else
            cout << "ABC三点一线,组不成三角形" << endl;
        cout << "输入q退出,输入c继续" << endl;
        char Sign;
        cin >>Sign;
        if (Sign == q)break;
    }
    system("pause");
    return 0;
}

2.1向量法plus

  上个方法直接从二维推到了三维,其实我们被忽悠了,判断向量是否同向我们不是一直用λ的吗?上一个代码中的isSnameDirction函数就是从此转换过来的。(他忽悠我们的目的是在二维中减少运算)再考虑当四点不共面时,可知原来的两个叉积所成的夹角为(0,,180),又考虑四点在同一平面内P却在三角形外,两叉积夹角为180。所以我们只需要判断三次两叉积同向即可,更改Side函数内代码,并删除isSnamePlane函数,Side函数代码如下

bool Side(Point A, Point B, Point C, Point P)//是否在同一侧
{
  Vector3 AB = toVector3(A, B);
  Vector3 AC = toVector3(A, C);
  Vector3 AP = toVector3(A, P);
  Vector3 a1 = AB.Cross(AC);
  Vector3 a2 = AB.Cross(AP);
  if (isSnameDirction(a1,a2))
    return 1;
  else
    return 0;
}

2.2向量法++(最下面的链接说此法为重心法,我实在想不出它和重心有啥关系,还有我又按照评论给的建议精简此方法,于是我叫它究极向量法)

技术分享

若四点共面,可知AP=u * AC + v * AB(以两点表示的都是向量)

如果系数u或v为负值,那么相当于朝相反的方向移动,即BA或CA方向。那么如果想让P位于三角形ABC内部,u和v必须满足什么条件呢?有如下三个条件

u >= 0   v >= 0  u + v <= 1

证明如下图;当P在BC边上(帮你理解,证明不规范)

技术分享

由三角形BPP‘与三角形ABC相似得P‘P=u*AC,得P‘B=u*AB,即u*AB+v*AB=AB,得u+v=1,只要u和v一个在变小都会使P在三角形内,反之即会在外,于是得u+v<=1

令v0 = AC, v1 = AB, v2 = AP,则v2 = u * v0 + v * v1,现在是一个方程,两个未知数,无法解出u和v,将等式两边分别点乘v0和v1的到两个等式

(v2) ? v0 = (u * v0 + v * v1) ? v0

(v2) ? v1 = (u * v0 + v * v1) ? v1

注意到这里u和v是数,而v0,v1和v2是向量,所以可以将点积展开得到下面的式子。

v2 ? v0 = u * (v0 ? v0) + v * (v1 ? v0)  // 式1

v2 ? v1 = u * (v0 ? v1) + v * (v1? v1)   // 式2

解这个方程得到

u = ((v1?v1)(v2?v0)-(v1?v0)(v2?v1)) / ((v0?v0)(v1?v1) - (v0?v1)(v1?v0))

v = ((v0?v0)(v2?v1)-(v0?v1)(v2?v0)) / ((v0?v0)(v1?v1) - (v0?v1)(v1?v0))

由柯西不等式:对任意向量v0, v1: v0^2 * V1^2 >= (v0 ? v1)^2。又v0, v1不共线,所以等号不成立,即公共分母>0

设 a = v0 ? v0, b = v1 ? v1, c = v0 ? v1,d = v2 ? v0, e = v2 ? v1, 公共分母 f = a * b - c* c令x = b * d - c * e; y = a * e - c * d

则:u = x / f, v = y / f           由: u >= 0, v >= 0, u + v <= 1, 和f > 0               有:x >= 0, y >= 0, x + y - f <= 0

重写PointInTri函数代码

bool PointInTri(Point A, Point B, Point C, Point P)
{
  Vector3 v0 = toVector3(A, C);
  Vector3 v1 = toVector3(A, B);
  Vector3 v2 = toVector3(A, P);
  double a = v0.Dot(v0);
  double b = v1.Dot(v1);
  double c = v0.Dot(v1);
  double d = v2.Dot(v0);
  double e = v2.Dot(v1);
  double f = a * b - c * c;
  double x = b * d - c * e;
  double y = a * e - c * d;
  if ((x >= 0) && (y >= 0) && (x + y - f <= 0))
    return 1;
  else
    return 0;
}

需要注意:我们开始推理时默认四点共面,若四点不共面,最开始的等式AP=u * AC + v * AB,便不可能存在。所以我们要保留2.1的isSnamePlane函数。

3.射线和三角形的相交检测

  射线和三角形的相交检测具体过程就查看链接http://www.cnblogs.com/graphics/archive/2010/08/09/1795348.html

  大致思路先确定射线OP是否与三角形ABC相交,若相交再判断交点是否为P。我猜这个才是实际中用到的吧(还有个内角和法,效率跟第一种方法差不多,不讲了,有兴趣的参考文献里有)。

  总结:哎,英语没学好Same啊,多加了个n。。。

参考文献:

  http://www.cnblogs.com/graphics/archive/2010/08/05/1793393.html

 

 

  

 





























以上是关于三维坐标下判断P点是否在三角形ABC中的主要内容,如果未能解决你的问题,请参考以下文章

给定三角形ABC和一点P(x,y,z),判断点P是否在ABC内

给定三角形ABC和一点P(x,y,z),判断点P是否在ABC内,给出思路并手写代码

判断点是否在三角形内转

2D空间中判断一点是否在三角形内

虎书学习笔记6:图形学基础数学(重心坐标系三维三角形)

三角化---深度滤波器