2D空间中判断一点是否在三角形内
Posted HONT blog
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了2D空间中判断一点是否在三角形内相关的知识,希望对你有一定的参考价值。
要注意如果是XY坐标轴的2D空间,要取差乘分量z而不是y。
实现原理是,将三角形ABC三个边(AB,BC,CA)分别与比较点判断差乘,如果这3个差乘结果表示的方向一致,说明就在三角形内。
效果:
代码(Unity3D):
using UnityEngine; using System.Collections; using System.Collections.Generic; public class TriangleCollider : MonoBehaviour { public const float ERROR = 0.05f; public Transform trianglePoint1; public Transform trianglePoint2; public Transform trianglePoint3; public Transform comparePoint; public bool IsContract(Vector3 comparePoint) { var dir1 = trianglePoint2.position - trianglePoint1.position; var dir2 = trianglePoint3.position - trianglePoint2.position; var dir3 = trianglePoint1.position - trianglePoint3.position; var cross1 = Mathf.Sign(Vector3.Cross(dir1, comparePoint - trianglePoint1.position).y); var cross2 = Mathf.Sign(Vector3.Cross(dir2, comparePoint - trianglePoint2.position).y); var cross3 = Mathf.Sign(Vector3.Cross(dir3, comparePoint - trianglePoint3.position).y); var dir = Mathf.Approximately(cross1, cross2) ? cross3 : Mathf.Approximately(cross1, cross3) ? cross2 : cross1; cross1 = Mathf.Sign(Vector3.Cross(dir1, comparePoint - trianglePoint1.position).y + -dir * ERROR); cross2 = Mathf.Sign(Vector3.Cross(dir2, comparePoint - trianglePoint2.position).y + -dir * ERROR); cross3 = Mathf.Sign(Vector3.Cross(dir3, comparePoint - trianglePoint3.position).y + -dir * ERROR); return Mathf.Approximately(cross1, cross2) && Mathf.Approximately(cross2, cross3); } void OnDrawGizmos() { if (comparePoint == null) return; var oldColor = Gizmos.color; if (IsContract(comparePoint.position)) Gizmos.color = Color.red; Gizmos.DrawLine(trianglePoint1.position, trianglePoint2.position); Gizmos.DrawLine(trianglePoint2.position, trianglePoint3.position); Gizmos.DrawLine(trianglePoint3.position, trianglePoint1.position); Gizmos.color = oldColor; } }
为了加误差,所以多做了3次差乘。不过使用起来还算可以
以上是关于2D空间中判断一点是否在三角形内的主要内容,如果未能解决你的问题,请参考以下文章
给定三角形ABC和一点P(x,y,z),判断点P是否在ABC内,给出思路并手写代码