二叉树的基本操作
Posted 指尖起舞
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了二叉树的基本操作相关的知识,希望对你有一定的参考价值。
基本结构及其工具
typedef int DataBype; #define PRINTDIVIDE cout << endl << "##########################################" << endl; class Node { public: DataBype v; Node * l; Node * r; Node() { v = 0; l = NULL; r = NULL; } private: }; typedef Node * PN; template<class T> void exchange(T & f, T & s) { T t = f; f = s; s = t; };
使用vector初始化二叉树
void BS::initwithivsbylevel( vector<DataBype> vs ) { queue<PN> tqn; if (!vs.empty()) { m_nroot = new Node; m_nroot->v = vs[0]; tqn.push(m_nroot); for (int i = 1; i < vs.size();) { PN cn = tqn.front(); tqn.pop(); PN tn = new Node; tn->v = vs[i ++]; cn->l = tn; tqn.push(tn); if (i < vs.size()) { tn = new Node; tn->v = vs[i ++]; cn->r = tn; tqn.push(tn); } } } }
打印第level 层
void BS::printlevel(PN root, int level ) { if (NULL == root) return; if (0 == level) cout << root->v << " "; printlevel(root->l, level - 1); printlevel(root->r, level - 1); }
得到树的深度
int BS::getlevel(const PN root ) { if (NULL == root) return 0; return max(getlevel(root->l), getlevel(root->r)) + 1; }
层遍历打印二叉树
void BS::printself() { int alllevel = getlevel(m_nroot); for (int i = 0; i < alllevel; ++ i) { printlevel(m_nroot, i); cout << endl; } }
递归先序、中序、后序遍历二叉树
void BS::preorder_recursion( const PN root ) { if (NULL != root) { cout << root->v << " "; preorder_recursion(root->l); preorder_recursion(root->r); } } void BS::inorder_recursion( const PN root ) { if (NULL != root) { inorder_recursion(root->l); cout << root->v << " "; inorder_recursion(root->r); } } void BS::postorder_recursion( const PN root ) { if (NULL != root) { postorder_recursion(root->l); postorder_recursion(root->r); cout << root->v << " "; } }
非递归先序遍历
void BS::preorder_no_recursion( const PN root ) { stack<PN> spn; PN tpn = root; while (NULL != tpn || !spn.empty()) { while (NULL != tpn) { cout << tpn->v << " "; spn.push(tpn); tpn = tpn->l; } if (!spn.empty()) { tpn = spn.top(); spn.pop(); tpn = tpn->r; } } }
非递归中序遍历
void BS::inorder_no_recursion( const PN root ) { stack<PN> spn; PN tpn = root; while (NULL != tpn || !spn.empty()) { while (NULL != tpn) { spn.push(tpn); tpn = tpn->l; } if (!spn.empty()) { tpn = spn.top(); cout << tpn->v << " "; spn.pop(); tpn = tpn->r; } } }
非递归后序遍历
void BS::postorder_no_recursion( const PN root ) { stack<PN> spn; PN tpn = NULL; PN pre = NULL; spn.push(root); while (!spn.empty()) { tpn = spn.top(); if ((NULL == tpn->l && NULL == tpn->r) || ( pre != NULL && (pre == tpn->l || pre == tpn->r) )) { cout << tpn->v << " "; pre = tpn; spn.pop(); } else { if (NULL != tpn->r) spn.push(tpn->r); if (NULL != tpn->l) spn.push(tpn->l); } } }
二叉树反转(递归和非递归)
void BS::reverse_recursion( PN root ) { if (NULL != root) { exchange(root->l, root->r); reverse_recursion(root->l); reverse_recursion(root->r); } } void BS::reverse_no_recursion( PN root ) { queue<PN> qpn; PN tpn = root; qpn.push(root); while (!qpn.empty()) { tpn = qpn.front(); qpn.pop(); exchange(tpn->l, tpn->r); if (NULL != tpn->l) qpn.push(tpn->l); if (NULL != tpn->r) qpn.push(tpn->r); } }
得到第k层节点个数
int BS::countklevel( const PN root, int k ) { if (NULL == root || k < 0) return 0; if (0 == k) return 1; return countklevel(root->l, k - 1) + countklevel(root->r, k - 1); }
是否包含节点
bool BS::find_node( const PN root, const DataBype & o) { if (NULL == root || (o != root->v && !find_node(root->l, o) && !find_node(root->r, o))) return false; return true; }
最近公共祖先
PN BS::getLCP(const PN root, const DataBype & f, const DataBype & s) { if (NULL == root || f == root->v || s == root->v) return root; if (find_node(root->l, f)) { if (find_node(root->r, s)) return root; return getLCP(root->l, f, s); } if (find_node(root->r, f)) { if (find_node(root->l, s)) return root; return getLCP(root->r, f, s); } return NULL; }
二叉树转线性表
PN BS::to_linklist_recursion( PN root) { if (NULL == root) return NULL; PN tl = to_linklist_recursion(root->l); PN head = root; if (NULL != tl) { head = tl; while (tl->r) tl = tl->r; tl->r = root; root->l = tl; } PN tr = to_linklist_recursion(root->r); root->r = tr; if (NULL != tr) tr->l = root; return head; }
以上是关于二叉树的基本操作的主要内容,如果未能解决你的问题,请参考以下文章