二叉树的遍历

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了二叉树的遍历相关的知识,希望对你有一定的参考价值。

参考技术A 1.遍历方案 从二叉树的递归定义可知,一棵非空的二叉树由根结点及左、右子树这三个基本部分组成。因此,在任一给定结点上,可以按某种次序执行三个操作: (1)访问结点本身(N), (2)遍历该结点的左子树(L), (3)遍历该结点的右子树(R)。以上三种操作有六种执行次序: NLR、LNR、LRN、NRL、RNL、RLN。 注意: 前三种次序与后三种次序对称,故只讨论先左后右的前三种次序。 2.三种遍历的命名 根据访问结点操作发生位置命名: ① NLR:前序遍历(PreorderTraversal亦称(先序遍历)) ——访问结点的操作发生在遍历其左右子树之前。 ② LNR:中序遍历(InorderTraversal) ——访问结点的操作发生在遍历其左右子树之中(间)。 ③ LRN:后序遍历(PostorderTraversal) ——访问结点的操作发生在遍历其左右子树之后。 注意: 由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtlee)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。 遍历算法 1.中序遍历的递归算法定义: 若二叉树非空,则依次执行如下操作: (1)遍历左子树; (2)访问根结点; (3)遍历右子树。 2.先序遍历的递归算法定义: 若二叉树非空,则依次执行如下操作: (1) 访问根结点; (2) 遍历左子树; (3) 遍历右子树。 3.后序遍历得递归算法定义: 若二叉树非空,则依次执行如下操作: (1)遍历左子树; (2)遍历右子树; (3)访问根结点。~ 参考技术B void PreOrder(BiTree *T)//先序遍历

if(T!=NULL)

printf("%c ",T->data);
PreOrder(T->lchild);
PreOrder(T->rchild);



void InOrder(BiTree *T)//中序遍历

if(T!=NULL)

InOrder(T->lchild);
printf("%c ",T->data);
InOrder(T->rchild);



void PostOrder(BiTree *T)//后序遍历

if(T!=NULL)

PostOrder(T->lchild);
PostOrder(T->rchild);
printf("%c ",T->data);


本回答被提问者采纳

Java实现二叉树的创建递归/非递归遍历

近期复习数据结构中的二叉树的相关问题,在这里整理一下

这里包含:
1、二叉树的先序创建

2、二叉树的递归先序遍历

3、二叉树的非递归先序遍历

4、二叉树的递归中序遍历

5、二叉树的非递归中序遍历

6、二叉树的递归后序遍历

7、二叉树的非递归后序遍历

8、二叉树的层次遍历

这里感谢博客http://blog.csdn.net/skylinesky/article/details/6611442的指导


/**二叉树的结点定义*/
class Node<T>{
	private T value;
	private Node<T> left;
	private Node<T> right;
	
	public Node(){
	}
	public Node(Node<T> left, Node<T> right, T value){
		this.left = left;
		this.right = right;
		this.value = value;
	}
	public Node(T value){
		this(null, null, value);
	}
	
	public Node<T> getLeft(){
		return this.left;
	}
	public void setLeft(Node<T> left){
		this.left = left;
	}
	public Node<T> getRight(){
		return this.right;
	}
	public void setRight(Node<T> right){
		this.right = right;
	}
	public T getValue(){
		return this.value;
	}
	public void setValue(T value){
		this.value = value;
	}
}


import java.io.File;
import java.io.FileNotFoundException;
import java.util.LinkedList;
import java.util.Scanner;

/**
 * 二叉树的定义:或为空,或仅仅有根节点,或有左子树和右子树(5种基本形态)
 * 二叉树性质:
 * 1、在二叉树的第i层上至多有2^(i-1)个结点(i>=1)
 * 2、深度为k的二叉树至多有2^(k) - 1个结点(k>=1)
 * 3、对于不论什么一颗二叉树,假设其终端结点数为n,度数为2的结点数为m。则n = m + 1
 * 4、具有n个结点的全然二叉树的深度为k = floor(log2(n)) + 1
 * 5、在含有n个结点的二叉链表中有n+1个空链域
 * 
 * @author 小菜鸟
 *创建时间:2014-08-10
 */

public class BinaryTree<T> {

	/**二叉树的根节点*/
	private Node<T> root;
	
	public BinaryTree(){}
	public BinaryTree(Node<T> root){
		this.root = root;
	}
	
	/**先序遍历创建二叉树*/
	/**input.txt: - + a # # * # # / e # # f # #
	 * # 代表空结点
	 */
	public void createBiTree(){
		Scanner scn = null;
		
		try {
			scn = new Scanner(new File("input.txt"));
		} catch (FileNotFoundException e) {
			e.printStackTrace();
		}
		
		this.root = createBiTree(root, scn);
	}
	private Node<T> createBiTree(Node<T> node, Scanner scn) {
		
		String temp = scn.next();
		if(temp.trim().equals("#")){
			return null;
		}
		else{
			node = new Node<T>((T)temp);
			node.setLeft(createBiTree(node.getLeft(), scn));
			node.setRight(createBiTree(node.getRight(), scn));
			return node;
		}
	}
	
	/**先序递归遍历二叉树*/
	public void preOrderTraverse(){
		preOrderTraverse(root);
	}
	private void preOrderTraverse(Node<T> node) {
		if(node != null){
			System.out.println(node.getValue());
			preOrderTraverse(node.getLeft());
			preOrderTraverse(node.getRight());
		}
	}
	
	
	/**先序非递归遍历二叉树*/
	public void nrPreOrderTraverse(){
		Stack<Node<T>> stack = new Stack<Node<T>>();
		Node<T> node = root;
		while(node != null || !stack.isEmpty()){
			while(node != null){
				System.out.println(node.getValue());
				stack.push(node);
				node = node.getLeft();
			}
			node = stack.pop();
			node = node.getRight();
		}
	}
	
	
	
	/**中序递归遍历二叉树*/
	public void inOrderTraverse(){
		inOrderTraverse(root);
	}
	private void inOrderTraverse(Node<T> node) {
		if(node != null){
			inOrderTraverse(node.getLeft());
			System.out.println(node.getValue());
			inOrderTraverse(node.getRight());
		}
	}
	
	/**中序非递归遍历二叉树*/
	public void nrInOrderTraverse(){
		Stack<Node<T>> stack = new Stack<Node<T>>();
		Node<T> node = root;
		while(node != null || !stack.isEmpty()){
			while(node != null){
				stack.push(node);
				node = node.getLeft();
			}
			node = stack.pop();
			System.out.println(node.getValue());
			node = node.getRight();
		}
	}
	
	/**后序递归遍历二叉树*/
	public void postOrderTraverse(){
		postOrderTraverse(root);
	}
	private void postOrderTraverse(Node<T> node) {
		if(node != null){
			postOrderTraverse(node.getLeft());
			postOrderTraverse(node.getRight());
			System.out.println(node.getValue());
		}
	}
	
	/**后序非递归遍历二叉树*/
	public void nrPostOrderTraverse(){
		Stack<Node<T>> stack = new Stack<Node<T>>();
		Node<T> node = root;
		Node<T> preNode = null;	//记录之前遍历的右结点
		while(node != null || !stack.isEmpty()){
			while(node != null){
				stack.push(node);
				node = node.getLeft();
			}
			node = stack.getTop();
			
			/**假设右结点为空,或者右结点之前遍历过。打印根结点*/
			if(node.getRight() == null || node.getRight() == preNode){
				System.out.println(node.getValue());
				node = stack.pop();
				preNode = node;
				node = null;
			}
			else{
				node = node.getRight();
			}
		}
	}
	
	
	/**层次遍历二叉树*/
	public void levelTraverse(){
		levelTraverse(root);
	}
	private void levelTraverse(Node<T> node) {
		Queue<Node<T>> queue = new Queue<Node<T>>();
		queue.push(node);
		while(!queue.isEmpty()){
			node = queue.pop();
			if(node != null){
				System.out.println(node.getValue());
				queue.push(node.getLeft());
				queue.push(node.getRight());
			}
		}
	}
	
	
	public static void main(String[] args){
		BinaryTree<String> bt = new BinaryTree<String>();
		bt.createBiTree();
		//bt.preOrderTraverse();
		//bt.inOrderTraverse();
		//bt.postOrderTraverse();
		//bt.nrPreOrderTraverse();
		//bt.nrInOrderTraverse();
		//bt.nrPostOrderTraverse();
		bt.levelTraverse();
	}
}



【注:当中关于栈和队列的定义请參考还有一篇博文】

Java实现栈和队列的定义:http://blog.csdn.net/junwei_yu/article/details/38470825








以上是关于二叉树的遍历的主要内容,如果未能解决你的问题,请参考以下文章

二叉树的后续遍历是啥意思啊?

二叉树的遍历

为啥树的后根遍历对应二叉树的中序遍历

二叉树 详解

图解 二叉树的四种遍历

二叉树的遍历