python: 深度学习-误差反向传播法

Posted taoyuxin

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python: 深度学习-误差反向传播法相关的知识,希望对你有一定的参考价值。

ReLU层的设计:

ReLU函数:

  技术图片

导数:

  技术图片

class Relu:
    def __init__(self):
        self.mask=None
        
    def forword(self,x):
        self.mask=(x<0)     #变量mask是由True/False构成的Numpy数组
        out=x.copy()
        out[self.mask]=0
        
        return out
        
    def backward(self,dout):
        dout[self.mask]=0
        dx=dout
        
        return dx

Sigmoid层的设计:

class Sigmoid:
    def __init__(self):
        self.out = None

    def forward(self, x):
        out = 1 / (1 + np.exp(-x))
        self.out = out

        return out

    def backward(self, dout):
        dx = dout * (1.0 - self.out) * self.out

        return dx

Affine 层:

class Affine:
    def __init__(self, W, b):
        self.W = W
        self.b = b
        self.x = None
        self.dW = None
        self.db = None

    def forward(self, x):
        self.x = x
        out = np.dot(x, self.W) + self.b

        return out

    def backward(self, dout):
        dx = np.dot(dout, self.W.T)
        self.dW = np.dot(self.x.T, dout)
        self.db = np.sum(dout, axis=0)

        return dx

Softmax-with-Loss 层的实现

class SoftmaxWithLoss:
    def __init__(self):
        self.loss = None # 损失
        self.y = None    # softmax的输出
        self.t = None    # 监督数据(one-hot vector)

    def forward(self, x, t):
        self.t = t
        self.y = softmax(x)
        self.loss = cross_entropy_error(self.y, self.t)

        return self.loss

    def backward(self, dout=1):
        batch_size = self.t.shape[0]
        dx = (self.y - self.t) / batch_size

        return dx

对应误差反向传播法的神经网络的实现:

import sys, os
sys.path.append(os.pardir)
import numpy as np
from common.layers import *
from common.gradient import numerical_gradient
from collections import OrderedDict

class TwoLayerNet:

    def __init__(self, input_size, hidden_size, output_size,
                 weight_init_std=0.01):
        # 初始化权重
        self.params = 
        self.params[W1] = weight_init_std *                             np.random.randn(input_size, hidden_size)
        self.params[b1] = np.zeros(hidden_size)
        self.params[W2] = weight_init_std *                             np.random.randn(hidden_size, output_size)
        self.params[b2] = np.zeros(output_size)

        # 生成层
        self.layers = OrderedDict()   # OrderedDict是有序字典
        self.layers[Affine1] =             Affine(self.params[W1], self.params[b1])
        self.layers[Relu1] = Relu()
        self.layers[Affine2] =             Affine(self.params[W2], self.params[b2])

        self.lastLayer = SoftmaxWithLoss()

    def predict(self, x):
        for layer in self.layers.values():
            x = layer.forward(x)

        return x

    # x:输入数据, t:监督数据
    def loss(self, x, t):
        y = self.predict(x)
        return self.lastLayer.forward(y, t)

    def accuracy(self, x, t):
        y = self.predict(x)
        y = np.argmax(y, axis=1)
        if t.ndim != 1 : t = np.argmax(t, axis=1)
        accuracy = np.sum(y == t) / float(x.shape[0])
        return accuracy

    # x:输入数据, t:监督数据
    def numerical_gradient(self, x, t):
        loss_W = lambda W: self.loss(x, t)

        grads = 
        grads[W1] = numerical_gradient(loss_W, self.params[W1])
        grads[b1] = numerical_gradient(loss_W, self.params[b1])
        grads[W2] = numerical_gradient(loss_W, self.params[W2])
        grads[b2] = numerical_gradient(loss_W, self.params[b2])

        return grads

    def gradient(self, x, t):
        # forward
        self.loss(x, t)

        # backward
        dout = 1
        dout = self.lastLayer.backward(dout)

        layers = list(self.layers.values())
        layers.reverse()
        for layer in layers:
            dout = layer.backward(dout)

        # 设定
        grads = 
        grads[W1] = self.layers[Affine1].dW
        grads[b1] = self.layers[Affine1].db
        grads[W2] = self.layers[Affine2].dW
        grads[b2] = self.layers[Affine2].db

        return grads

 

以上是关于python: 深度学习-误差反向传播法的主要内容,如果未能解决你的问题,请参考以下文章

python: 深度学习-误差反向传播法

MATLAB深度学习多层神经网络

[人工智能-深度学习-7]:数据流图正向传播导数梯度梯度下降法反向链式求导,非常非常重要!!!

深度学习知识点查漏补缺(反向传播)

“深度学习”学习日记。--加深网络

三深度学习基础2(前反向传播;超参数)