2021 第十二届蓝桥杯大赛软件赛省赛,C/C++ 大学B组题解

Posted 小哈里

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了2021 第十二届蓝桥杯大赛软件赛省赛,C/C++ 大学B组题解相关的知识,希望对你有一定的参考价值。

比赛时长: 四个小时
比赛规则:
蓝桥杯比赛跟天梯赛、ACM还不太一样,比赛中提交的答案并没有反馈机制,也就是说你提交了答案以后,自己并不知道是对是错,就像考试一样,只有交了卷,成绩下来以后才能知道自己的奖项。

满分150
T1-T5答案提交共45分,分值分别是5,5,10,10,15
T6-T10为程序提交共105分,分值分别是15,20,20,25,25

T6-T10开放补题
提交链接:https://lx.lanqiao.cn/problemset.page
搜索【第十二届】【省赛】【B组】

一般来说,蓝桥杯=暴力杯
前六题都做对共60分,后面四题嫖一半45分,105以上感觉一般能合格。
T1,T2很裸的暴力
T3,T4需要set优化或者思考一下枚举方案的暴力
T5,T6很裸的暴力,但是要能写一点点基本的代码,题目细节看仔细
T7,T8背包dp与找规律递推。很裸的暴力可以打一半。
T9,T10一般是思维题或dp。稍微思考一下的很裸的暴力可以打一半。

T1-T5

T1 空间

  • 小蓝准备用256MB 的内存空间开一个数组,数组的每个元素都是32 位
    二进制整数,如果不考虑程序占用的空间和维护内存需要的辅助空间,请问
    256MB 的空间可以存储多少个32 位二进制整数?
  • 已知1MB=1024KB,1KB=1024B,1B=8b
  • 所以答案 67108864

T2 卡片

  • 小蓝有很多数字卡片,每张卡片上都是数字 0 到 9。 小蓝准备用这些卡片来拼一些数,他想从 1 开始拼出正整数,每拼一个,就保存起来,卡片就不能用来拼其它数了。 小蓝想知道自己能从 1 拼到多少。
    例如,当小蓝有 30 张卡片,其中 0 到 9 各 3张,则小蓝可以拼出 1 到 10, 但是拼 11 时卡片 1 已经只有一张了,不够拼出 11。
    现在小蓝手里有 0 到 9 的卡片各2021 张,共 20210 张,请问小蓝可以从 1 拼到多少? 提示:建议使用计算机编程解决问题。
  • 创个数组表示卡片张数,枚举一下就行
  • 3181

T3 直线

  • 在平面直角坐标系中,两点可以确定一条直线。如果有多点在一条直线上,那么这些点中任意两点确定的直线是同一条。
    给定平面上 2 × 3 个整点> (x, y)|0 ≤ x < 2, 0 ≤ y < 3, x ∈ Z, y ∈ Z,即横坐标是 0 到 1 (包含 0 和 1) 之间的整数、纵坐标是 0 到 2 (包含 0 和 2) 之间的整数的点。这些点一共确定了 11 条不同的直线。
    给定平面上 20 × 21个整点 (x, y)|0 ≤ x < 20, 0 ≤ y < 21, x ∈ Z, y ∈ Z,即横坐标是 0 到 19 (包含 0 和> 19) 之间的整数、纵坐标是 0 到 20 (包含 0 和 20) 之间的整数的点。请问这些点一共确定了多少条不同的直线
  • 四层for循环枚举(x1,y1)(x2,y2),根据y=kx+b和k=(y1-y2)/(x1-x2)分别得出k和b的值,注意斜率不存在的情况。依次遍历每个点,用set储存k、b的值用于查重,如果k、b不在map中,则结果加一。注意所有变量都要设为double值,不然计算就会出错。
  • 47753

T4 货物摆放

  • 小蓝有一个超大的仓库,可以摆放很多货物。 现在,小蓝有 n 箱货物要摆放在仓库,每箱货物都是规则的正方体。小蓝规定了长、宽、高三个互相垂直的方向,每箱货物的边都必须严格平行于长、宽、高。
    小蓝希望所有的货物最终摆成一个大的立方体。即在长、宽、高的方向上 分别堆 L、W、H 的货物,满足 n = L × W × H。给定n,请问有多少种堆放货物的方案满足要求。 例如,当 n = 4 时,有以下 6 种方案:1×1×4、1×2×2、1×4×1、2×1×2、 2× 2 × 1、4 × 1 × 1。
    请问,当 n = 2021041820210418 (注意有 16 位数字)时,总共有多少种方案?

  • 求n=三个数相乘有多少种方案,16位不超过ll,可以暴力。
    考虑优化,长宽高和面积显然是n的因数。对于该性质,那么枚举长宽高的时候只需要枚举n的因数即可(虽然枚举n的所有因数也会超时),但是可以set一下,n/a也是n的因数,那么复杂度就降低了。
    再遍历这个集合**(作为一条边a),可以用n/a计算出另外两条边相乘的面积S,另外两条边显然也在初始集合之内,且是S的因数,所以再枚举S的因数(即第二条边)**,就可以计算出第三条边,统计答案,就不会超时了。

  • 2430

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    int main()
        LL n = 2021041820210418;
        set<LL>se;
        for(LL a = 1; a <= n; a++)//枚举n的因数
            if(n%a==0)
                if(se.find(a)!=se.end())break; //存在重复值就结束
                se.insert(a);  se.insert(n/a); //n/a优化
            
        
        LL res = 0;
        for(LL a : se)//枚举所有可行的第一条边
            LL s = n/a;
            set<LL>se2;
            for(LL b = 1; b <= s; b++)//枚举S的因数(枚举第二条边)
                if(s%b==0)
                    //可以计算出第三条边h=s/b
                    if(se2.find(b)!=se2.end())break;
                    se2.insert(b);  se2.insert(s/b);
                    if(b==s/b)res++;    //b和h相同
                    else res+=2;        //212,221是不同方案
                
            
        
        cout<<res<<"\\n";
        return 0;
    
    

T5 路径

  • 小蓝学习了最短路径之后特别高兴,他定义了一个特别的图,希望找到图 中的最短路径
    小蓝的图由 2021 个结点组成,依次编号 1 至2021。 对于两个不同的结点 a, b,如果 a 和 b 的差的绝对值大于 21,则两个结点 之间没有边相连;如果 a 和 b的差的绝对值小于等于 21,则两个点之间有一条长度为 a 和 b 的最小公倍数的无向边相连
    例如:结点 1 和结点 23之间没有边相连;结点 3 和结点 24 之间有一条无 向边,长度为 24;结点 15 和结点 25 之间有一条无向边,长度为 75。
    请计算,结点 1 和结点 2021 之间的最短路径长度是多少。 提示:建议使用计算机编程解决问题。

  • 暴力建图跑Dijkstra即可,板子题毫无思维含量,仔细点别写错了就行

  • 10266837

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    int gcd(int a, int b)
        return !b ? a: gcd(b,a%b);
    
    const int maxn = 2050;
    int e[maxn][maxn];
    int dist[maxn], vis[maxn];
    int main()
        //建图
        memset(e,0x3f,sizeof(e));
        for(int i = 1; i <= 2021; i++)e[i][i]= 0;
        int n = 2021;
        for(int i = 1; i <= 2021; i++)
            for(int j = 1; j <= 2021; j++)
                if(abs(i-j)<=21)
                    e[i][j] = e[j][i] = i/gcd(i,j)*j;
                
            
        
        //Dijkstra
        memset(dist,0x3f,sizeof(dist));
        dist[1] = 0;
        for(int i = 1; i <= n; i++)
            int v=-1, t = e[0][0];
            for(int j = 1; j <= n; j++)
                if(!vis[j] && dist[j]<t)
                    t = dist[j];
                    v = j;
                
            
            if(v==-1)break;
            vis[v] = 1;
            //dist[v] = t;
            for(int j = 1; j <= n; j++)
                if(dist[j]>dist[v]+e[v][j])
                    dist[j] = dist[v]+e[v][j];
                
            
        
        //cout<<e[0][0]<<"\\n";
        cout<<dist[2021];
        return 0;
    
    
    
    

T6-T10

T6 时间显示

  • 小蓝要和朋友合作开发一个时间显示的网站。在服务器上,朋友已经获取了当前的时间,用一个整数表示,值为从 1970 年 1 月 1 日00:00:00 到当前时刻经过的毫秒数
    现在,小蓝要在客户端显示出这个时间。小蓝不用显示出年月日,只需要显示出时分秒即可,毫秒也不用显示,直接舍去即可。
    给定一个用整数表示的时间,请将这个时间对应的时分秒输出。

  • 不用显示年月日,只要时分秒,所以不难想到很傻比的做法是对获得的时间戳每次减去60累加即可,注意开longlong,非常简单。(暴力也能过哦)
    然后优化一下很显然的做法是,直接取模
    需要注意题目给的是毫秒,不是秒!!!

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    int main()
        LL ms;  cin>>ms;
        LL h= 0, m=0, s=ms/1000;
        while(s >= 60)
            s -= 60;
            m++;
            if(m==60)
                m = 0;
                h++;
                if(h==24)h = 0;
            
        
        printf("%02d:%02d:%02d",h,m,s);
        return 0;
    
    
    
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    int main()
        LL ms;  cin>>ms;
        LL s = ms/1000;
        LL h = (s/3600)%24;
        LL m = (s/60)%60;
        s %= 60;
        printf("%02d:%02d:%02d",h,m,s);
        return 0;
    
    
    
    
    

T7 砝码称重

  • 你有一架天平和 N 个砝码,这 N 个砝码重量依次是 W1, W2, · · · , WN。 请你计算一共可以称出多少种不同的重量?注意砝码可以放在天平两边。
  • 放左边为正数,放右边为负数,不放为0,每种砝码三种选择。本质为有限制选择的背包问题。
    记f[i][j]表示,只从前i个物品中选,总重量为j的所有方案的是否存在。
    转移的时候,对于第i个物品,可以放左边+w[i],放右边-w[i],以及不放。
    最后答案就是遍历总重量m,累加f[n][i]即可。
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    const int maxn = 2e5+10,maxx=1e5;
    int w[maxn];
    int f[110][maxn];
    int main()
        int n, m=0;  cin>>n;
        for(int i = 1; i <= n; i++)
            cin>>w[i];  m+=w[i];
        
        f[0][0+maxx] = 1; //前0个物品中选,重量为0的方案数
        for(int i = 1; i <= n; i++)
            for(int j = -m; j <= m; j++)
                f[i][j+maxx] = f[i-1][j+maxx];//不放
                if(j-w[i]>=-m)f[i][j+maxx] |= f[i-1][j-w[i]+maxx];//放左边
                if(j+w[i]<=m)f[i][j+maxx] |= f[i-1][j+w[i]+maxx];//放右边
            
        
        int res = 0;
        for(int i = 1; i <= m; i++)
            if(f[n][i+maxx])res++;
        
        cout<<res<<"\\n";
        return 0;
    
    
    
    

T8 杨辉三角形

  • 如果我们按从上到下、从左到右的顺序把所有数排成一列,可以得到如下数列: 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, …
    给定一个正整数 N,请你输出数列中第一次出现 N 是在第几个数?
  • 滚动数组暴力出杨辉三角,特判第几个数出现,对于前面的部分可以打表.
    //TLE-30分
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    const int maxn = 1010;
    LL f[maxn][maxn];
    int main()
        LL n;  cin>>n;
        f[1][1] = 1;
        f[2][1] = f[2][2] = 1;
        LL cnt = 3;
        for(int i = 3; ; i++)
            for(int j = 1; j <= i; j++)
                f[i][j] = f[i-1][j-1]+f[i-1][j];
                cnt++;
                if(f[i][j]==n)
                    cout<<cnt<<"\\n";
                    return 0;
                
            
        
        return 0;
    
    
    //TLE-40分
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    const int maxn = 1e7+10;
    LL f[2][maxn];
    int main()
        LL n;  cin>>n;
        f[1][1] = 1;
        f[0][1] = f[0][2] = 1;//2%2==0
        LL cnt = 3;
        for(int i = 3; ; i++)
            for(int j = 1; j <= i; j++)
                f[(i+2)%2][j] = f[(i-1+2)%2][j-1]+f[(i-1+2)%2][j];
                cnt++;
                if(f[i%2][j]==n)
                    cout<<cnt<<"\\n";
                    return 0;
                
            
        
        return 0;
    
    
    
    
    
    

T9 双向排序

  • 给定序列 (a1, a2, · · · , an) = (1, 2, · · · , n),即 ai = i。
    小蓝将对这个序列进行 m次操作,每次可能是将 a1, a2, · · · , aqi 降序排列,或者将 aqi, aqi+1, · · · , an升序排列。
    请求出操作完成后的序列

  • 来个简单粗暴的写法,就是对于每个输入均以sort处理,垃圾数据表示可以给你60分hhh。

    //TLE-60分
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    const int maxn = 1e5+10;
    int a[maxn];
    bool cmp(int x, int y)
        return x>y;
    
    int main()
        int n, m;  cin>>n>>m;
        for(int i = 1; i <= n; i++)a[i] = i;
        for(int i = 1; i <= m; i++)
            int p, q;  cin>>p>>q;
            if(p==0)sort(a+1,a+q+1,cmp);
            else sort(a+q,a+n+1);
        
        for(int i = 1; i <= n; i++)
            cout<<a[i]<<" ";
        
        return 0;
    
    
    
    
  • 一共两个操作(1-n)的排列,将某前缀降序排列,将某后缀升序。共m个操作。
    (1)我们本来输入的序列就是升序的,第一个有效操作必然是降序操作
    (2)对于连续的降序或升序操作,我们保留最长的一个操作即可。有效操作必然是左右交替的
    (3)当左侧区间长度大于上一个对左端操作时,含重复操作的区间了,我们只需要操作后一个(长度范围更大的)左区间操作即可。

    //RE-60分
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    const int maxn = 1e5+10;
    int a[maxn];
    int main()
        int n, m;  cin>>n>>m;
        //化简操作
        stack<pair<int,int> >st;
        for(int i = 1; i <= m; i++)
            int p, q;  cin>>p>>q;
            if(p==0)//左边前缀降序
                //删除前面比当前操作小的左操作
                while(!st.empty() && st.top().first==0)
                    q = max(q, st.top().second); st.pop();
                
                //删掉前边比当前操作小的左端操作及其对应的右端操作
                if(st.size()>=2)
                    pair<int,int> t = st.top();  st.pop();
                    if以上是关于2021 第十二届蓝桥杯大赛软件赛省赛,C/C++ 大学B组题解的主要内容,如果未能解决你的问题,请参考以下文章

    2021 第十二届蓝桥杯大赛软件赛省赛,C/C++ 大学B组题解

    2021 第十二届蓝桥杯大赛软件赛省赛,C/C++ 大学B组题解

    2021.5.9 第十二届蓝桥杯大赛软件赛省赛第二场大学B组(个人题解)

    第十二届蓝桥杯大赛软件赛省赛第二场题解

    第十二届蓝桥杯大赛软件赛省赛第二场C++B组

    2021年第十二届蓝桥杯大赛软件赛省赛第二场JavaB组C++B组全部题目以及前9题详细题解