[NOI2006]神奇口袋

Posted cjfdf

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[NOI2006]神奇口袋相关的知识,希望对你有一定的参考价值。

题面在这里

题意

开始时袋中有\(t\)种小球,第\(i\)种小球有\(t_i\)个,之后每次等概率取出一个球,第\(i\)次取球时观察这个球的颜色\(c_i\)放回并向袋中加入\(d\)个颜色为\(c_i\)的球;
给出一组询问\([x_i,y_i](1\le i\le n)\),求同时满足第\(x_i\)次取球的颜色为\(y_i\)的概率

\(1≤t,n≤1000, 1≤a_k ,d≤10, 1≤x_1<x_2<…<x_n≤10000, 1≤y_k≤t\)

hint

有没有注意到\(1≤x_1<x_2<…<x_n≤10000\)这个条件?
感觉又鬼畜又没有用对么?
那么我们把这个条件删掉
其实这个条件仅仅是在给你一个提示

sol

其实我做题的时候也不知道这个条件有什么用...于是我就没有做出来
如果\(x_i=i\)你还不会做?直接模拟即可

所以这道题直接模拟就可以了。
!!!!!!是的很震惊对吧
给你\(1≤x_1<x_2<…<x_n≤10000\)这个条件,
就是让你考虑怎么把这个条件化成\(x_i=i\)的......

接下来我们开始证明,
如果仅仅考虑一次抽取的情况,每次抽到颜色\(c\)的概率都是一样的,
即第\(i\)次抽到颜色\(c\)的概率和第\(i+1\)次抽到颜色\(c\)的概率相同
设第\(i\)次抽之前,袋子里有\(a\)个颜色为\(c\)的球,有\(tot\)个颜色不为\(c\)的球
那么第\(i\)次抽抽到\(c\)的概率显然是\(P_i=\frac{a}{tot}\)
那么第\(i+1\)次抽抽到\(c\)的概率呢?
\[P_{i+1}=\frac{a}{tot}\times\frac{a+d}{tot+d}+(1-\frac{a}{tot})\times\frac{a}{tot+d}=\frac{a}{tot}=P_i\]
嗯是的

于是直接把\([x_1,x_2,x_3,...,x_n]\)转换为\([1,2,3,...,n]\)即可
注意高精(可以考虑先\(fact\),最后再化系数)

代码

#include<bits/stdc++.h>
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<iomanip>
#include<cstring>
#include<complex>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#define mp make_pair
#define pb push_back
#define RG register
#define il inline
using namespace std;
typedef unsigned long long ull;
typedef vector<int>VI;
typedef long long ll;
typedef double dd;
const dd eps=1e-10;
const int mod=1e9+7;
const int N=5010;
const int M=20010;
il ll read(){
    RG ll data=0,w=1;RG char ch=getchar();
    while(ch!=‘-‘&&(ch<‘0‘||ch>‘9‘))ch=getchar();
    if(ch==‘-‘)w=-1,ch=getchar();
    while(ch<=‘9‘&&ch>=‘0‘)data=data*10+ch-48,ch=getchar();
    return data*w;
}

il void file(){
    //freopen("a.in","r",stdin);
    //freopen("a.out","w",stdout);
}

int t,n,d,a[N],y[N],sum;
int pri[M],vis[M];
il void sieve(){
    vis[1]=1;
    for(RG int i=2;i<M;i++){
        if(!vis[i])pri[++pri[0]]=i;
        for(RG int j=1;j<=pri[0]&&1ll*pri[j]*i<M;j++){
            vis[i*pri[j]]=1;if(i%pri[j]==0)break;
        }
    }
}

int sys[3][M];
il void fact(int x,int id){
    for(RG int j=1;j<=pri[0]&&1ll*pri[j]*pri[j]<=x;j++)
        while(x%pri[j]==0)sys[id][j]++,x/=pri[j];
    for(RG int j=1;j<=pri[0]&&1ll*pri[j]<=x;j++){
        while(x%pri[j]==0)sys[id][j]++,x/=pri[j];if(x==1)break;
    }
}

struct bignumber{
    int ws,s[5005];
    il void init(){ws=s[1]=1;}
    il void times(int x){
        if(!ws)init();
        for(RG int i=1;i<=ws;i++)s[i]*=x;
        for(RG int i=1;i<=ws;i++)
            if(s[i]>=10)s[i+1]+=s[i]/10,s[i]%=10;
        while(s[ws+1])ws++,s[ws+1]+=s[ws]/10,s[ws]%=10;
    }
    il void print(){
        for(RG int i=ws;i;i--)printf("%d",s[i]);
    }
}A[3];

il void solve(){
    for(RG int i=1,minn;i<=pri[0];i++){
        minn=min(sys[1][i],sys[2][i]);
        sys[1][i]-=minn;sys[2][i]-=minn;
    }
    A[1].init();A[2].init();
    for(RG int id=1;id<=2;id++)
        for(RG int i=1;i<=pri[0];i++)
            for(RG int j=1;j<=sys[id][i];j++)A[id].times(pri[i]);
    A[2].print();printf("/");A[1].print();puts("");
}

int main()
{
    t=read();n=read();d=read();sieve();
    for(RG int i=1;i<=t;i++)a[i]=read(),sum+=a[i];
    for(RG int i=1;i<=n;i++)
        read(),y[i]=read(),fact(a[y[i]],2),a[y[i]]+=d,fact(sum,1),sum+=d;
    solve();return 0;
}

以上是关于[NOI2006]神奇口袋的主要内容,如果未能解决你的问题,请参考以下文章

●BZOJ 1416 [NOI2006]神奇的口袋

动态规划-神奇的口袋V1

动态规划-神奇的口袋V2

1761:神奇的口袋

神奇的口袋

1114.神奇的口袋