bzoj1026: [SCOI2009]windy数(数位dp)

Posted a799091501

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了bzoj1026: [SCOI2009]windy数(数位dp)相关的知识,希望对你有一定的参考价值。

1026: [SCOI2009]windy数

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 8203  Solved: 3687
[Submit][Status][Discuss]

Description

  windy定义了一种windy数。不含前导零且相邻两个数字之差至少为2的正整数被称为windy数。 windy想知道,
在A和B之间,包括A和B,总共有多少个windy数?

Input

  包含两个整数,A B。

Output

  一个整数

Sample Input

【输入样例一】
1 10
【输入样例二】
25 50

Sample Output

【输出样例一】
9
【输出样例二】
20

HINT

【数据规模和约定】

100%的数据,满足 1 <= A <= B <= 2000000000 。

 题解

第一次做数位dp的题(从1662滚过来)

这道题也算是挺裸的一道数位dp 只需要记录上一位就可以判断是否合法

状态转移方程:令f[i][j]表示前i位,最高位为j的方案数

f[i][j]=sum(f[i-1][k]) if(k-j>=2)

代码大体是照着 http://www.cnblogs.com/zbtrs/p/6105338.html 打的 我觉得讲的非常棒

对于几个可能不太好理解的位置我加了一点注释

/**************************************************************
    Problem: 1026
    User: a799091501
    Language: C++
    Result: Accepted
    Time:0 ms
    Memory:1292 kb
****************************************************************/
 
#pragma GCC optimize("O2")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<set>
#include<map>
#include<limits.h>
#include<ctime>
#define N 100001
typedef long long ll;
const int inf=999999999;
const int maxn=2017;
using namespace std;
ll f[20][20],num[20];
inline int read()
{
    int f=1,x=0;char ch=getchar();
    while(ch>\'9\'|ch<\'0\')
    {
        if(ch==\'-\')
        f=-1;
        ch=getchar();
    }
    while(ch<=\'9\'&&ch>=\'0\')
    {
        x=(x<<3)+(x<<1)+ch-\'0\';
        ch=getchar();
    }
    return f*x;
}
void init()
{
    memset(f,0,sizeof(f));
    for(int i=0;i<=9;i++)
    f[1][i]=1;//第一位所有数都是windy数
    for(int i=2;i<=10;i++)
    for(int j=0;j<=9;j++)
    for(int k=0;k<=9;k++)
    if(abs(j-k)>=2) f[i][j]+=f[i-1][k]; //第i位最高位为j的状态可以从每一个符合条件的i-1位最高位为k转移而来    
}
ll solve(ll x)
{
    memset(num,0,sizeof(num));
    if(x==0)return 0;
    ll pos=0,ans=0;
    while(x)
    {
        num[++pos]=x%10;
        x/=10;
    }
    for(int i=1;i<pos;i++)
    for(int j=1;j<=9;j++)//不含前导零,因此从1开始枚举
    ans+=f[i][j];
    for(int i=1;i<num[pos];i++)
    ans+=f[pos][i];
    for(int i=pos-1;i>=1;i--)
    {
        for(int j=0;j<num[i];j++)//枚举最高位的所有状态
        if(abs(j-num[i+1])>=2)//上一位
        ans+=f[i][j];
        if(abs(num[i+1]-num[i])<2)break;//后面的答案不可能有贡献,跳出
        if(i==1)ans+=1;
    }
    return ans;
}
int main()
{
    int a=read(),b=read();
    init();
    cout<<solve(b)-solve(a-1);
}

以上是关于bzoj1026: [SCOI2009]windy数(数位dp)的主要内容,如果未能解决你的问题,请参考以下文章

[bzoj1026][SCOI2009]windy数

[BZOJ1026][SCOI2009]windy数

bzoj1026 [SCOI2009]windy数

BZOJ 1026 [SCOI2009]windy数

BZOJ 1026: [SCOI2009]windy数

bzoj1026: [SCOI2009]windy数(数位dp)