[NOIP2015] 子串

Posted qt666

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[NOIP2015] 子串相关的知识,希望对你有一定的参考价值。

Description

有两个仅包含小写英文字母的字符串 A 和 B。现在要从字符串 A 中取出 k 个互不重叠的非空子串,然后把这 k 个子串按照其在字符串 A 中出现的顺序依次连接起来得到一 个新的字符串,请问有多少种方案可以使得这个新串与字符串 B 相等?注意:子串取出 的位置不同也认为是不同的方案。

Input

第一行是三个正整数 n,m,k,分别表示字符串 A 的长度,字符串 B 的长度,以及问题描述中所提到的 k,每两个整数之间用一个空格隔开。 
第二行包含一个长度为 n 的字符串,表示字符串 A。 第三行包含一个长度为 m 的字符串,表示字符串 B。

Output

输出共一行,包含一个整数,表示所求方案数。由于答案可能很大,所以这里要求输出答案对 1,000,000,007 取模的结果。

Sample Input

样例输入1: 
6 3 1 
aabaab 
aab

样例输入2: 
6 3 2 
aabaab 
aab

Sample Output

样例输出1: 
2

样例输出2: 
7

Hint

样例解释: 
所有合法方案如下:(加下划线的部分表示取出的子串) 
样例一:aab aab / aab aab 
样例二:a ab aab / a aba ab / a a ba ab / aab a ab / aa b aab / aa baa b / aab aa b 
样例三:a a b aab / a a baa b / a ab a a b / a aba a b / a a b a a b / a a ba a b / aab a a b

数据范围: 
对于第 1 组数据:1≤n≤500,1≤m≤50,k=1; 
对于第 2 组至第 3 组数据:1≤n≤500,1≤m≤50,k=2; 
对于第 4 组至第 5 组数据:1≤n≤500,1≤m≤50,k=m; 
对于第 1 组至第 7 组数据:1≤n≤500,1≤m≤50,1≤k≤m; 
对于第 1 组至第 9 组数据:1≤n≤1000,1≤m≤100,1≤k≤m; 
对于所有 10 组数据:1≤n≤1000,1≤m≤200,1≤k≤m。

Source

NOIP2015,动态规划

 

这个题很容易想到三维的dp状态,dp[i][j][k],表示A串到i位置,B串到j位置,已经用了k个串的方案数。。。

就是很常规的字符串dp状态。。。然后转移也是字符串dp的常规套路,按a[i]==b[j]和a[i]!=a[j]分别转移一下。。。

大致是这样:

当a[i]!=b[j]时,

dp[i][j][k]+=dp[i-1][j][k](跳过A串的i位置)

a[i]==b[j]时,

dp[i][j][k]+=dp[i-1][j-1][k-1](新开一个串);

dp[i][j][k]+=dp[i-1][j][k](跳过A串的i位置);

dp[i][j][k]+=dp[i-1][j-1][k](表示从上一个串接过来)

但是第三个转移有点问题,因为要从上一个串接过来的话,需要a[i-1]==b[j-1]才能转移。

那么我们多开一维,dp[i][j][k][0/1]第四维表示i和j是否匹配上了。。。

然后转移就很simple了。。。

// MADE BY QT666
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<cstring>
#define RG register
using namespace std;
typedef long long ll;
const int N=100050;
const int Mod=1e9+7;
int n,m,k;
int dp[2][205][205][2];
char a[N],b[N];
int main(){
  freopen("2015substring.in","r",stdin);
  freopen("2015substring.out","w",stdout);
  scanf("%d%d%d",&n,&m,&k);
  scanf("%s",a+1);scanf("%s",b+1);
  int cur=0;
  for(RG int i=1;i<=n;i++){
    dp[cur][0][0][1]=1;cur^=1;
    memset(dp[cur],0,sizeof(dp[cur]));
    for(RG int j=1;j<=i&&j<=m;j++){
      for(RG int p=1;p<=k;p++){
	if(a[i]==b[j]){
	  (dp[cur][j][p][1]+=dp[cur^1][j-1][p][1])%=Mod;
	  (dp[cur][j][p][1]+=(dp[cur^1][j-1][p-1][1]+dp[cur^1][j-1][p-1][0])%Mod)%=Mod;
	  (dp[cur][j][p][0]+=(dp[cur^1][j][p][0]+dp[cur^1][j][p][1])%Mod)%=Mod;
	}
	else{
	  (dp[cur][j][p][0]+=(dp[cur^1][j][p][0]+dp[cur^1][j][p][1])%Mod)%=Mod;
	}
      }
    }
  }
  printf("%d\n",(dp[cur][m][k][0]+dp[cur][m][k][1])%Mod);
  return 0;
}

  

以上是关于[NOIP2015] 子串的主要内容,如果未能解决你的问题,请参考以下文章

[NOIp 2015]子串

NOIP2015子串

[NOIP2015] 子串

[DP][NOIP2015]子串

[NOIP2015] 子串

NOIP2015子串