谈线性变换

Posted 数学クラブ

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了谈线性变换相关的知识,希望对你有一定的参考价值。

首先,先明确向量的基和坐标

当然,也可以表示成更简洁的形式

,其中

现在出现一个线性变换,线性变换一定满足两个条件:

那么,线性变换能不能用个矩阵来代替呢?大部分情况是可以的。

这一步仅仅是把向量用向量空间的一个基来表示,因为我们已经知道线性变化满足两个很好的性质,所以对上式进行拆分

,请记住这个式子,我们会回来继续推导

我们惊讶的发现,向量被线性变换之后,可以用新的基表示坐标。但是,我们实在不能容忍一个向量空间用两个基来表示坐标,实在太混乱了!

既然新的基中,各个向量在向量空间内,我们一定能这样表示

为什么坐标要取这么古怪的下标,因为我们可以用一个矩阵表示

再回到

这样,我们又重新用基来表示了,而线性变换后,坐标也就变成了

而线性变换,我们也可以用一个矩阵来代替。

以上是关于谈线性变换的主要内容,如果未能解决你的问题,请参考以下文章

线性映射07——线性变换的矩阵表示

OpenCV——图像灰度变换

线性代数本质3:矩阵和线性变换

跟我学Python图像处理丨何为图像的灰度非线性变换

矩阵与线性变换

《机器学习基石》---非线性变换