POJ-3735 Training little cats(矩阵快速幂)

Posted 可惜没如果=_=

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ-3735 Training little cats(矩阵快速幂)相关的知识,希望对你有一定的参考价值。

Training little cats
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 13586   Accepted: 3362

Description

Facer‘s pet cat just gave birth to a brood of little cats. Having considered the health of those lovely cats, Facer decides to make the cats to do some exercises. Facer has well designed a set of moves for his cats. He is now asking you to supervise the cats to do his exercises. Facer‘s great exercise for cats contains three different moves:
g i : Let the ith cat take a peanut.
e i : Let the ith cat eat all peanuts it have.
s i j : Let the ith cat and jth cat exchange their peanuts.
All the cats perform a sequence of these moves and must repeat it m times! Poor cats! Only Facer can come up with such embarrassing idea. 
You have to determine the final number of peanuts each cat have, and directly give them the exact quantity in order to save them.

Input

The input file consists of multiple test cases, ending with three zeroes "0 0 0". For each test case, three integers nm and k are given firstly, where n is the number of cats and k is the length of the move sequence. The following k lines describe the sequence.
(m≤1,000,000,000, n≤100, k≤100)

Output

For each test case, output n numbers in a single line, representing the numbers of peanuts the cats have.

Sample Input

3 1 6
g 1
g 2
g 2
s 1 2
g 3
e 2
0 0 0

Sample Output

2 0 1

Source

 
矩阵快速幂
程序:
 1 #include <cstdio>
 2 #include <cmath>
 3 #include <cstdlib>
 4 #include <cstring>
 5 #include <queue>
 6 #include <stack>
 7 #include <vector>
 8 #include <iostream>
 9 #include "algorithm"
10 using namespace std;
11 typedef long long LL;
12 const int MAX=105;
13 LL n,m,K;
14 struct Mat{
15     LL x,y;
16     LL mat[MAX][MAX];
17     Mat(){
18         x=0,y=0;
19         memset(mat,0,sizeof(mat));
20     }
21     Mat operator * (const Mat &cc) {
22         Mat zt;
23         zt.x=x;
24         zt.y=cc.y;
25         int i,j,k;
26         for (i=1;i<=x;i++)
27          for (k=1;k<=cc.x;k++)
28           if (mat[i][k])
29            for (j=1;j<=cc.y;j++)
30             zt.mat[i][j]+=mat[i][k]*cc.mat[k][j];
31         return zt;
32     }
33 }a,b;
34 Mat ksm(Mat zt,LL k){
35     LL i,j;
36     Mat an;
37     an.x=zt.x,an.y=zt.y;
38     for (i=1;i<=an.x;i++)
39      for (j=1;j<=an.y;j++)
40       an.mat[i][j]=(i==j);
41     while (k)
42     {if (k%2==1)
43       an=an*zt;
44      k/=2;
45      zt=zt*zt;
46     }
47     return an;
48 }
49 int main(){
50     freopen ("cats.in","r",stdin);
51     freopen ("cats.out","w",stdout);
52     LL i,j;
53     LL zt1,zt2;
54     while (1)
55     {scanf("%lld%lld%lld",&n,&m,&K);
56      if (n==0 && m==0 && K==0)
57       break;
58      b.x=n+1,b.y=n+1;
59      for (i=1;i<=b.x;i++)
60       for (j=1;j<=b.y;j++)
61        b.mat[i][j]=(i==j);
62      char s[MAX];
63      a.x=n+1,a.y=1;
64      memset(a.mat,0,sizeof(a.mat));
65      a.mat[n+1][1]=1;
66      for (i=1;i<=K;i++)
67      {scanf("%s",s+1);
68       if (s[1]==g)
69       {scanf("%lld\n",&zt1);
70        b.mat[zt1][n+1]++;
71       }
72       if (s[1]==e)
73       {scanf("%lld\n",&zt1);
74        for (j=1;j<=n+1;j++)
75         b.mat[zt1][j]=0;
76       }
77       if (s[1]==s)
78       {scanf("%lld%lld\n",&zt1,&zt2);
79        for (j=1;j<=n+1;j++)
80         swap(b.mat[zt1][j],b.mat[zt2][j]);
81       }
82      }
83      b=ksm(b,m);
84      a=b*a;
85      for (i=1;i<=n;i++)
86       printf("%lld ",a.mat[i][1]);
87      printf("\n");
88     }
89     return 0;
90 }

 

以上是关于POJ-3735 Training little cats(矩阵快速幂)的主要内容,如果未能解决你的问题,请参考以下文章

POJ-3735 Training little cats(矩阵快速幂)

poj 3735 Training little cats (矩阵快速幂)

poj3735—Training little cats(特殊操作转化为矩阵操作)

TZOJ--5480: 孤衾易暖 // POJ--3735 Training little cats (矩阵快速幂)

poj 3735 Training little cats 矩阵快速幂+稀疏矩阵乘法优化

Training little cats