NOIP2003加分二叉树[树 区间DP]

Posted Candy?

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了NOIP2003加分二叉树[树 区间DP]相关的知识,希望对你有一定的参考价值。

题目描述

设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号。每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都有一个加分,任一棵子树subtree(也包含tree本身)的加分计算方法如下:

subtree的左子树的加分× subtree的右子树的加分+subtree的根的分数。

若某个子树为空,规定其加分为1,叶子的加分就是叶节点本身的分数。不考虑它的空子树。

试求一棵符合中序遍历为(1,2,3,…,n)且加分最高的二叉树tree。要求输出;

(1)tree的最高加分

(2)tree的前序遍历

输入输出格式

输入格式: 

第1行:一个整数n(n<30),为节点个数。

第2行:n个用空格隔开的整数,为每个节点的分数(分数<100)。

输出格式:

第1行:一个整数,为最高加分(结果不会超过4,000,000,000)。

第2行:n个用空格隔开的整数,为该树的前序遍历。

输入输出样例

输入样例#1:
5
5 7 1 2 10
输出样例#1:
145
3 1 2 4 5

PreOrder:root+left+right
InOrder:left+root+right
PostOrder:left+right+root
按照根的前中后

f[i][j]表示i到j的中序遍历的最大分数,转移很普通
预处理f[i][i-1]=1,f[i][i]=a[i]
记录step[i][j]选了哪个作根
输出前序遍历用递归比较好
//
//  main.cpp
//  加分二叉树
//
//  Created by Candy on 9/7/16.
//  Copyright © 2016 Candy. All rights reserved.
//

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=35;
int n;
ll a[N],f[N][N];
int step[N][N];
void dp(){
    for(int i=1;i<=n;i++) f[i][i-1]=1;
    for(int i=n;i>=1;i--)
        for(int j=i+1;j<=n;j++)
            for(int k=i;k<=j;k++)
                if(f[i][k-1]*f[k+1][j]+a[k]>f[i][j]){
                    f[i][j]=f[i][k-1]*f[k+1][j]+a[k];
                    step[i][j]=k;
                    //printf("%d %d %lld \n",i,j,f[i][j]);
                }
        
}
void write(int l,int r){
    if(l>r) return;
    if(l==r) {printf("%d ",l);return;}
    printf("%d ",step[l][r]);
    write(l,step[l][r]-1);write(step[l][r]+1,r);
}
int main(int argc, const char * argv[]) {
    scanf("%d",&n);
    for(int i=1;i<=n;i++) scanf("%lld",&a[i]),f[i][i]=a[i];
    dp();
    printf("%lld\n",f[1][n]);
    write(1,n);
    return 0;
}

 

 

以上是关于NOIP2003加分二叉树[树 区间DP]的主要内容,如果未能解决你的问题,请参考以下文章

NOIP2003TG 加分二叉树 区间DP

加分二叉树 vijos1991 NOIP2003第三题 区间DP/树形DP/记忆化搜索

加分二叉树 NOIP2003 提高组区间dp

NOIp2003 加分二叉树

树形dp(洛谷1040 加分二叉树noip2003提高组第三题)

NOIP-2003 加分二叉树