codevs1907 方格取数 3

Posted lcf2000

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了codevs1907 方格取数 3相关的知识,希望对你有一定的参考价值。

Description

在一个有m*n 个方格的棋盘中,每个方格中有一个正整数。现要从方格中取数,使任意2 个数所在方格没有公共边,且取出的数的总和最大。试设计一个满足要求的取数算法。

Input

第1 行有2 个正整数m和n,分别表示棋盘的行数和列数。接下来的m行,每行有n个正整数,表示棋盘方格中的数。

Output

对于给定的方格棋盘,按照取数要求编程找出总和最大的数,将取数的最大总和输出。

Sample Input

3 3
1 2 3
3 2 3
2 3 1 

Sample Output

11

HINT

n,m<=30

 

  嗯......这道题大概算是自己想出来的第一道网络流的题吧?

  虽然想了很久,WA了很多发,但终于A掉了......

  网络流的题真是难想(但这一题还是比较简单的),如果不是我已经知道这道题要用网络流做,还不知道要想到什么时候去了......

  好了,不扯多了,进正题:

  首先,我们发现直接建模的话非常不好搞,体重的条件不好表示......

  于是,我们就想,是否可以把我们选完数之后剩下的数给表示出来呢?我们发现这个不难做到。只需将棋盘黑白二染色,把黑点、白点各看成一块,相邻的格子间有边相连,不难发现将黑白两块分开的割的方案就是不选的点的合法方案(脑补一下应该可以搞出来)。所以最小割即是合法方案中选出的点和最大的方案。于是我们可以从源点向所有黑(白)点连一条容量为这个格子里的数的边,从黑(白)点向相邻的点连一条容量为INF的边,再从白(黑)点向汇点连一条容量为当前格子里的数的边,跑一边最大流即可得出不选的点的最小和,用所有数字之和减去它就是答案。

  update:其实这就是最大独立集等于总点数减去最大匹配数

  下面贴代码:

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 #include<cmath>
 6 #define maxm 100010
 7 #define INF (1<<25)
 8 #define r(j) (j^1)
 9 
10 using namespace std;
11 typedef long long llg;
12 
13 int head[101*101],next[maxm],to[maxm],c[maxm],tt=1;
14 int a[101][101],zx[4]={0,0,1,-1},zy[4]={1,-1,0,0};
15 int d[maxm],l,r,dep[maxm],ans,tut,s,t,n,m;
16 
17 int getint(){
18     int w=0;bool q=0;
19     char c=getchar();
20     while((c>\'9\'||c<\'0\')&&c!=\'-\') c=getchar();
21     if(c==\'-\') q=1,c=getchar();
22     while(c>=\'0\'&&c<=\'9\') w=w*10+c-\'0\',c=getchar();
23     return q?-w:w;
24 }
25 
26 void link(int x,int y,int z){
27     to[++tt]=y;next[tt]=head[x];head[x]=tt;
28     to[++tt]=x;next[tt]=head[y];head[y]=tt;
29     c[tt^1]=z;
30 }
31 
32 bool bfs(){
33     for(int i=1;i<=t;i++) dep[i]=0;
34     l=r=0;d[r++]=s;dep[s]=1;int u;
35     while(l!=r){
36         u=d[l++];
37         for(int i=head[u];i;i=next[i])
38             if(!dep[to[i]] && c[i]>0){
39                 dep[to[i]]=dep[u]+1;
40                 d[r++]=to[i];
41             }
42     }
43     return dep[t]>0;
44 }
45 
46 int dfs(int u,int low){
47     int res=0,v;
48     if(u==t) return low;
49     if(!low) return 0;
50     for(int i=head[u];i;i=next[i])
51         if(c[i]>0 && dep[to[i]]==dep[u]+1){
52             v=dfs(to[i],min(low-res,c[i]));
53             c[i]-=v;c[r(i)]+=v;res+=v;
54         }
55     return res;
56 }
57 
58 int main(){
59     freopen("a.in","r",stdin);
60     freopen("a.out","w",stdout);
61     n=getint();m=getint();s=n*m+1;t=s+1;
62     for(int i=1;i<=n;i++)
63         for(int j=1;j<=m;j++)
64             a[i][j]=getint();
65     for(int i=1,now(0);i<=n;i++)
66         for(int j=1;j<=m;j++){
67             now++;
68             if(!((i+j)&1)){
69                 link(s,now,a[i][j]);
70                 for(int k=0,x,y,n1;k<4;k++){
71                     x=i+zx[k];y=j+zy[k];
72                     if(x>0 && x<=n && y>0 && y<=m){
73                         n1=(x-1)*m+y;
74                         link(now,n1,INF);
75                     }
76                 }
77             }
78             else link(now,t,a[i][j]);
79             tut+=a[i][j];
80         }
81     while(bfs())
82         while(int tot=dfs(s,INF)) ans+=tot;
83     printf("%d\\n",tut-ans);
84     return 0;
85 }

以上是关于codevs1907 方格取数 3的主要内容,如果未能解决你的问题,请参考以下文章

codevs1907 方格取数 3

codevs1907方格取数3(最大流最小割定理)

线性规划与网络流24题●09方格取数问题&13星际转移问题

Codevs 1043 方格取数

codevs——T1043 方格取数

codevs1043 方格取数