最短编辑距离 72.EditDistance.md

Posted antoniosu

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了最短编辑距离 72.EditDistance.md相关的知识,希望对你有一定的参考价值。

题目描述

Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.

You have the following 3 operations permitted on a word:

  1. Insert a character

  2. Delete a character

  3. Replace a character

Example 1:

Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace ‘h‘ with ‘r‘)
rorse -> rose (remove ‘r‘)
rose -> ros (remove ‘e‘)

Example 2:

Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove ‘t‘)
inention -> enention (replace ‘i‘ with ‘e‘)
enention -> exention (replace ‘n‘ with ‘x‘)
exention -> exection (replace ‘n‘ with ‘c‘)
exection -> execution (insert ‘u‘)

难度系数

Hard

思路:如下

首先我们令word1和word2分别为:michaelabmichaelxy(为了理解简单,我们假设word1和word2字符长度是一样的),dis[i] [j]作为word1和word2之间的Edit Distance,我们要做的就是求出michaelx到michaely的最小steps。[0]

首先解释下dis[i] [j]:它是指word1[i]和word2[j]的Edit Distance。dis[0] [0]表示word1和word2都为空的时候,此时他们的Edit Distance为0。很明显可以得出的,dis [0] [j]就是word1为空,word2长度为j的情况,此时他们的Edit Distance为j,也就是从空,添加j个字符转换成word2的最小Edit Distance为j;同理dis[i] [0]就是,word1长度为i,word2为空时,word1需要删除i个字符才能转换成空,所以转换成word2的最小Edit Distance为i。下面初始化代码:

for (int i = 0; i < row; i++) dis[i][0] = i;
for (int j = 0; j < col; j++) dis[0][j] = j;

 

假设word1[i]和word2[j](此处i = j)分别为:michaelab和michaelxy

如果b==y, dis[i][j] = dis[i-1][j-1]。 
如果b!=y,则会有添加、删除、替换是那三种操作

 

添加:也就是在michaelab后面添加一个y,那么word1就变成了michaelaby,此时 dis[i][j] = 1 + dis[i][j-1];
上式中,1代表刚刚的添加操作,添加操作后,word1变成michaelaby,word2为michaelxy。
dis[i][j-1]代表从word1[i]转换成word2[j-1]的最小Edit Distance,也就是michaelab转换成michaelx的最小
Edit Distance,由于两个字符串尾部的y==y,所以只需要将michaelab变成michaelx就可以了,而他们之间的最
小Edit Distance就是dis[i][j-1]。

 

删除:也就是将michaelab后面的b删除,那么word1就变成了michaela,此时dis[i][j] = 1 + dis[i-1][j];
上式中,1代表刚刚的删除操作,删除操作后,word1变成michaela,word2为michaelxy。dis[i-1][j]代表从
word[i-1]转换成word[j]的最小Edit Distance,也就是michaela转换成michaelxy的最小Edit Distance,所以
只需要将michaela变成michaelxy就可以了,而他们之间的最小Edit Distance就是dis[i-1][j]。

 

替换:也就是将michaelab后面的b替换成y,那么word1就变成了michaelay,此时dis[i][j] = 1 + dis[i-1][j-1];
上式中,1代表刚刚的替换操作,替换操作后,word1变成michaelay,word2为michaelxy。dis[i-1][j-1]代表从
word[i-1]转换成word[j-1]的最小Edit Distance,也即是michaelay转换成michaelxy的最小Edit Distance,由
于两个字符串尾部的y==y,所以只需要将michaela变成michaelx就可以了,而他们之间的最小Edit Distance就是
dis[i-1][j-1]。


程序代码对应如下:

class Solution {
public:
    int minDistance(string word1, string word2) {
        int m = word1.size(), n = word2.size();
        vector<vector<int>> dp(m + 1, vector<int>(n + 1));
        for (int i = 0; i <= m; ++i) dp[i][0] = i;
        for (int i = 0; i <= n; ++i) dp[0][i] = i;
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                if (word1[i - 1] == word2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    dp[i][j] = min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i][j - 1])) + 1;
                }
            }
        }
        return dp[m][n];
    }
};

 

github地址:https://github.com/AntonioSu/leetcode/blob/master/problems/72.EditDistance.md

参考:https://blog.csdn.net/baodream/article/details/80417695

以上是关于最短编辑距离 72.EditDistance.md的主要内容,如果未能解决你的问题,请参考以下文章

最短编辑距离

最短编辑距离问题理解

最短编辑距离算法实现

最短编辑距离

poj4323 最短编辑距离

902. 最短编辑距离