如何在线性代数中求出正交矩阵?

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了如何在线性代数中求出正交矩阵?相关的知识,希望对你有一定的参考价值。

在线性代数中,正交矩阵是指其列向量组成的矩阵中的每个列向量互相正交,并且每个列向量的模长为1。因此,求解正交矩阵的方法如下:

首先,选择一个线性无关的向量组成矩阵A,即A的列向量线性无关。这些列向量可以是随机的,也可以是基于特定问题的选择。

对矩阵A进行QR分解,将A分解为正交矩阵Q和上三角矩阵R的乘积,即A=QR。QR分解的算法有多种,包括Gram-Schmidt算法、Householder变换和Givens旋转等。其中,Gram-Schmidt算法是最简单的方法之一,但是可能会导致数值稳定性问题。而Householder变换和Givens旋转算法则相对更为稳定。

通过Q矩阵得到正交矩阵O。因为Q矩阵是正交矩阵,所以将它的每个列向量除以其模长即可得到正交矩阵O。即:

    O = Q / ||Q||

    其中,||Q||表示Q矩阵的模长,即矩阵的每个列向量模长的平方和的平方根。

    通过以上方法,我们可以得到一个正交矩阵O。需要注意的是,正交矩阵不一定是唯一的,因为存在多个正交矩阵可以满足同样的要求。

参考技术A

正交基的求法比较固定,就是施密特正交化的过程。

将基a1=(1,1,1) a2=(0,1,1) a3=(0,0,1)化成标准正交基。

ab如果垂直,则a点乘b等于0,因此可以这样正交化

a1不变,a2' = a2-a1(a1 .a2)/|a1|^2,这样a2' .a1 = a2 .a1 - (a2.a1)a1.a1

a3 = a3 - a1(a1 .a3)/|a1|^2 - a2'(a2' .a3)/|a2|^2

带入运算即可。

扩展资料:

对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =E(E是单位矩阵),则 A 为非奇异矩阵(或称可逆矩阵),B为A的逆阵。

矩阵非奇异(可逆)当且仅当它的行列式不为零。

矩阵非奇异当且仅当它代表的线性变换是个自同构。

矩阵半正定当且仅当它的每个特征值大于或等于零。

矩阵正定当且仅当它的每个特征值都大于零。

解线性方程组的克拉默法则。

参考资料来源:百度百科-线性代数

参考技术B 最标准的方法就是施密特正交化,这个关键字搜索百度百科,有具体步骤

以上是关于如何在线性代数中求出正交矩阵?的主要内容,如果未能解决你的问题,请参考以下文章

MIT线性代数:17.正交矩阵和Cram-Schmidt正交化

从PCAPLS-DAOPLS-DA学习线性代数和矩阵

《本科-线性代数笔记-精简汇总》,纯手工!

线性代数_矩阵

matlab中如何求解齐次线性方程组(代数矩阵)的非零解

线性代数笔记