P2627 修剪草坪[dp][单调队列]
Posted garen-wang
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了P2627 修剪草坪[dp][单调队列]相关的知识,希望对你有一定的参考价值。
P2627 修剪草坪
给你一个(n)个数字的数组,至多连续取(k)个数字,求取出的最大和。
预处理了前缀和之后,一维dp很容易想:(dp[i] = max(dp[j-1] + sum[j+1,i]))
用前缀和写就是(dp[i]=max(dp[j-1]+sum[i]-sum[j]))
把与(i)有关的拿出(max),就有(dp[i]=sum[i]+max(dp[j-1]-sum[j]))
(j)能取的是一个固定区间,长度为(k),所以直接单调队列维护咯!
维护一个单调递减的队列,队头就是最大值了。
复杂度为(O(n))。太优美了!
代码:
/*************************************************************************
@Author: Garen
@Created Time : Tue 12 Feb 2019 10:19:25 AM CST
@File Name: P2627.cpp
@Description:
************************************************************************/
#include<bits/stdc++.h>
#define ll long long
const ll maxn = 100005;
ll dp[maxn];
ll a[maxn], sum[maxn];
ll n, k;
std::deque<ll> q;
ll d[maxn];
ll update(ll i) {
d[i] = dp[i - 1] - sum[i];
while(!q.empty() && d[q.back()] < d[i]) q.pop_back();
q.push_back(i);
while(!q.empty() && q.front() < i - k) q.pop_front();
return d[q.front()];
}
int main() {
scanf("%lld %lld", &n, &k);
for(ll i = 1; i <= n; i++) {
scanf("%lld", &a[i]);
sum[i] = sum[i - 1] + a[i];
}
/*
for(ll i = 1; i <= k; i++) dp[i] = sum[i];
for(ll i = k + 1; i <= n; i++) {
for(ll j = i - k; j <= i; j++) {
dp[i] = std::max(dp[i], dp[j - 1] + sum[i] - sum[j]);
}
// dp[i] = sum[i] + std::max(dp[j - 1] - sum[j]));
}
*/
q.push_back(0);
for(ll i = 1; i <= n; i++) {
dp[i] = sum[i] + update(i);
}
printf("%lld
", dp[n]);
return 0;
}
以上是关于P2627 修剪草坪[dp][单调队列]的主要内容,如果未能解决你的问题,请参考以下文章
bzoj2442[Usaco2011 Open]修剪草坪 单调队列优化dp
BZOJ_2343_[Usaco2011 Open]修剪草坪 _单调队列_DP