bzoj2560串珠子(子集dp)

Posted zh-comld

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了bzoj2560串珠子(子集dp)相关的知识,希望对你有一定的参考价值。

       铭铭有n个十分漂亮的珠子和若干根颜色不同的绳子。现在铭铭想用绳子把所有的珠子连接成一个整体。
  现在已知所有珠子互不相同,用整数1到n编号。对于第i个珠子和第j个珠子,可以选择不用绳子连接,或者在ci,j根不同颜色的绳子中选择一根将它们连接。如果把珠子看作点,把绳子看作边,将所有珠子连成一个整体即为所有点构成一个连通图。特别地,珠子不能和自己连接。
  铭铭希望知道总共有多少种不同的方案将所有珠子连成一个整体。由于答案可能很大,因此只需输出答案对1000000007取模的结果。

Solution

神仙dp。

我们先令g[i]表示在i这个状态中,随意连边的方案数,这个可以轻松的搞出来。

然后我们再考虑从状态中减去不合法的,我们可以考虑枚举子集,把当前集合强行分成不连通的两个集合,这样的方案数就是f[s]*g[s^i].

为了避免算重复,我们需要从集合中找出一个固定点,强制让这个点在S集合中,这样就不会出现我们在g[s^i]中算了一遍后又在g[s]算了一遍。

Code

#include<iostream>
#include<cstdio>
#define N 22
using namespace std;
const int mod=1000000007;
long long a[N][N],f[1<<17],g[1<<17];
int n;
int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;++i)
      for(int j=1;j<=n;++j)scanf("%lld",&a[i][j]);
    int ma=(1<<n)-1;
    for(int i=1;i<=ma;++i){
        g[i]=1;
        for(int j=1;j<=n;++j)if(i&(1<<j-1))
          for(int k=j+1;k<=n;++k)if(i&(1<<k-1))
             (g[i]*=(a[j][k]+1))%=mod;
    }
    for(int i=1;i<=ma;++i){
      for(int S=i&(i-1);S;S=i&(S-1))
        if(!((S^i)&(i&-i)))(f[i]+=(f[S]*g[S^i])%mod)%=mod;
      f[i]=((g[i]-f[i])%mod+mod)%mod;
    }
    printf("%lld",f[ma]);
    return 0;
}

 

 


以上是关于bzoj2560串珠子(子集dp)的主要内容,如果未能解决你的问题,请参考以下文章

bzoj2560串珠子 状压dp+容斥(?)

BZOJ2560串珠子 状压DP+容斥

$bzoj2560$ 串珠子 容斥+$dp$

bzoj 2560 串珠子

题解-bzoj2560 串珠子

bzoj 2560 串珠子