一阶非线性常微分方程解的存在性定理—Picard-Lindelof定理
Posted zhangwenbiao
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了一阶非线性常微分方程解的存在性定理—Picard-Lindelof定理相关的知识,希望对你有一定的参考价值。
上一节简单介绍了可求解的一阶常微分方程的解法,因为大部分非线性方程是不可解的,所以需要给出解的存在性的证明。本节主要介绍一阶非线性常微分方程Cauchy问题
$$
(E),,,,,frac{dy}{dx}=f(x,y),,,,,,y(x_{0})=y_{0}.
$$
解的存在性定理Picard-Lindelof定理(有的书上称它为Cauchy-Lipschitz定理). 对一阶常微分方程解的存在性理论作出重要贡献的数学家有Cauchy、Lipschitz、Picard、Lindelof、Peano等,其中Picard提出的Picard迭代法尤其值得关注。据传Picard证明Picard—Lindelof定理的原始论文足足有三四百页,后来数学家Banach把Picard的方法抽象出来证明了著名的Banach不动点定理。Banach不动点定理是分析学中最重要的定理之一,也是用的最多的定理之一,它在线性方程组求解迭代方法的收敛性、常微分方程的两点边值问题、隐函数定理、Lax-Milgram定理甚至代数方程解的存在性等问题中均有重要应用。许多微分方程(组)通过转化为等价的积分方程再利用不动点理论来证明解的存在性。本节也采用这一框架来探索方程(E)解的存在性。为此,首先利用Picard迭代给出Banach不动点定理的证明。
定理1 (Banach) 设$X$为Banach空间(即完备的赋范空间,完备的意思指所有的Cauchy列均收敛),$f:X o X$为压缩映射,即存在常数$k, 0<k<1$,对任意$x,yin X$有
$$
|f(x)-f(y)|leq k|x-y|,
$$
则映射$f: X o X$有且只有一个不动点$xin X.$
证明: 任取$x_{0}in X$,构造Picard迭代
$$
x_{n+1}=f(x_{n}),,,,,ngeq 0.
$$
则
$$
|x_{n+1}-x_{n}|=|f(x_{n})-f_{x_{n-1}}|leq k|x_{n}-x_{n-1}|leqcdotsleq k^n|x_{1}-x_{0}|.
$$
设$m>ngeq 0$,由三角不等式和上式得
$$
|x_{m}-x_{n}|leq sum_{p=n}^{m-1}|x_{p+1}-x_{p}|leq frac{k^n}{1-k}|x_{1}-x_{0}|,
$$
当$m,n o infty$时,$|x_{m}-x_{n}| o 0$, 故序列${x_{n}}$为Cauchy列,由$X$的完备性知存在$x_{infty}in X$使得$lim_{n oinfty}x_{n}=x_{infty}.$ $f:X o X$满足Lipschitz条件,显然连续.故
$$
x_{infty}=lim_{n oinfty}x_{n+1}=lim_{n oinfty}f(x_{n})=f(lim_{n oinfty}x_{n})=f(x_{infty}).
$$
存在性得证。
误差估计:
$$
|x_{n}-x_{infty}|=lim_{m oinfty}|x_{n}-x_{m}|leq frac{k^n}{1-k}|x_{1}-x_{0}|.
$$
若$lim_{n oinfty}x_{n}=x_{c}$,由上式知
$$
|x_{c}-x_{infty}|=0.
$$
唯一性得证。证毕。
------
定理2 (Picard—Lindelof) 设初值问题
$$
(E),,,,,frac{dy}{dx}=f(x,y),,,,,,y(x_{0})=y_{0}.
$$
$f: Q_{a,b} o mathbb{R}$为连续函数,并且对第二个变量满足Lipschitz条件,即
$$
|f(x,y_{1})-f(x,y_{2})|leq L |y_{1}-y|
$$
其中矩形区域$Q_{a,b}$ 为
$$
Q_{a,b}={(x,y):|x-x_{0}|leq a, |y-y_{0}|leq b}.
$$
$,a,, b,,L$均为常数。则(E)在局部区间$I=[x_{0}-h,x_{0}+h]$上有解,其中常数
$$
h=minleft{a,frac{b}{M},frac{1}{L}
ight},,,,,M=max_{(x,y)in mathbb{R}}f(x,y)
$$
证明: 由微积分基本定理知,方程(E)等价于积分方程
$$
y(x)=y_{0}+int_{x_{0}}^{x}f(s,y(s))ds.
$$
取区间
$$
I_{varepsilon}=[x_{0}-varepsilon,x_{0}+varepsilon] sub [x_{0}-a,x_{0}+a].
$$
$$
J_{varepsilon}=[y_{0}-Mvarepsilon,y_{0}+Mvarepsilon]sub [y_{0}-b,y_{0}+b]
$$
其中$varepsilon$ 为待定常数,
定义映射
$$
F(y)=y_{0}+int_{x_{0}}^{x}f(s,y(s))ds,
$$
则
$$
F: C(I_{varepsilon};J_{varepsilon}) o C(I_{varepsilon};J_{varepsilon}).
$$
事实上,
$$
|F(y)-y_{0}|=left|int_{x_{0}}^{x}f(s,y(s)ds
ight|leq Mvarepsilon.
$$
取$C(I_{varepsilon};J_{varepsilon})$的上确界范数,压缩条件
$$
|F(y_{1})-F(y_{2})|=sup_{xin I_{varepsilon}}left|int_{x_{0}}^{x}f(s,y_{1}(s))-f(s,y_{2}(s))ds
ight|leq Lvarepsilon |y_{1}-y_{2}|
$$
故当
$$
varepsilon <frac{1}{L},,,varepsilon<a,,,and,,,varepsilon<frac{b}{M}.
$$
时,由Banach不动点定理知存在唯一的$yin C(I_{varepsilon};J_{varepsilon})$使得$F(y)=y$,即为原微分方程等价的积分方程的唯一解。
------
定理3 (改进的Picard-Lindelof) 设初值问题
$$
(E),,,,,frac{dy}{dx}=f(x,y),,,,,,y(x_{0})=y_{0}.
$$
$f: Q_{a,b} o mathbb{R}$为连续函数,并且对第二个变量满足Lipschitz条件,即
$$
|f(x,y_{1})-f(x,y_{2})|leq L |y_{1}-y|
$$
其中矩形区域$Q_{a,b}$ 为
$$
Q_{a,b}={(x,y):|x-x_{0}|leq a, |y-y_{0}|leq b}.
$$
$,a,, b,,L$均为常数。则(E)在局部区间$I=[x_{0}-h,x_{0}+h]$上有解,其中常数
$$
h=minleft{a,frac{b}{M}
ight},,,,,M=max_{(x,y)in mathbb{R}}f(x,y)
$$
注:这个定理与上个定理的不同在于$h$的范围变大了一些。证明它的工具为以下推广的Banach不动点定理。
定理4 (推广的Banach不动点定理) 设$X$为Banach空间(即完备的赋范空间,完备的意思指所有的Cauchy列均收敛),$F^{n}:X o X, ngeq 1$为压缩映射,则映射$F: X o X$有且只有一个不动点$xin X.$
定理4的证明 :
不妨设$ngeq 2$,由Banach不动点定理知存在唯一的$x_{infty}in X,F^{n}x_{infty}=x_{infty}$,又
$$
F^{n}(F(x))=F^{n+1}(x)=F(F^{n}x)=(F(x)).
$$
上式表明$F(x)$也是$F^{n}:X o X$的一个不动点,由唯一性知$F(x)=x.$ 证毕.
定理3的证明:符号设定均与定理2的证明相同。
设
$$
forall y,zin C(I_{varepsilon},J_{varepsilon}),y_{1}=y,z_{1}=z.
$$
$$
y_{k+1}=y_{0}+int_{x_{0}}^{x}f(s,y_{k}(s))ds,,,kgeq 1.
$$
$$
z_{k+1}=y_{0}+int_{x_{0}}^{x}f(s,z_{k}(s))ds,,,kgeq 1.
$$
有估计式
$$
|y_{2}(x)-z_{2}(x)|=left|int_{x_{0}}^{x}f(s,y(s))-f(s,z(s))
ight|leq L|y-z|cdot |x-x_{0}|,
$$
依次递推,
$$
|y_{3}-z_{3}|=left|int_{x_{0}}^{x}f(s,y_{2}(s))-f(s,z_{2}(s))
ight|leqleft|int_{x_{0}}^{x}L|y_{2}-z_{2}|
ight|
$$
$$
leq L^{2}|y-z|left|int_{x_{0}}^{x}|s-x_{0}|ds
ight|=frac{L^2}{2!}|y-z|cdot(x-x_{0})^{2}
$$
$$
cdots
$$
$$
|F^{n+1}y-F^{n+1}z|leq frac{L^{n}varepsilon^{n}}{n!}|y-z|
$$
而
$$
lim_{n oinfty}frac{L^{n}varepsilon^n}{n!}=0.
$$
也就是说存在$pin mathbb{N}^{+},s.t.,,F^{p}$为压缩映射,从而根据推广的Banach定理知映射$F: X o X$有且只有一个不动点$xin X.$ 这里对$varepsilon$的限制为
$$
varepsilon<a,,,,and,,,,,varepsilon<frac{b}{M}.
$$
证毕。
以上是关于一阶非线性常微分方程解的存在性定理—Picard-Lindelof定理的主要内容,如果未能解决你的问题,请参考以下文章