POJ 1284 Primitive Roots
Posted tyh-tyh
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ 1284 Primitive Roots相关的知识,希望对你有一定的参考价值。
Primitive Roots
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 5481 | Accepted: 3101 |
Description
We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (xi mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 }. For example, the consecutive powers of 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive root modulo 7.
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.
Input
Each line of the input contains an odd prime numbers p. Input is terminated by the end-of-file seperator.
Output
For each p, print a single number that gives the number of primitive roots in a single line.
Sample Input
23 31 79
Sample Output
10 8 24
我觉得丧心病狂的是读了很久题才看懂意思(英语太渣了。。)再一看题目,原根。。好吧,就当进一步理解原根了吧。
原根定义:设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根。(其中φ(m)表示m的欧拉函数)
假设一个数g是P的原根,那么g^i mod P的结果两两不同,且有 1< g< P, 0< i < P,归根到底就是g^(P-1) = 1 (mod P)当且仅当指数为P-1的时候成立.(这里P是素数).
简单来说,g^i mod p ≠ g^j mod p (p为素数)
其中i≠j且i, j介于1至(p-1)之间
则g为p的原根。
用两次欧拉函数就ok了。
1 #include <cstdlib> 2 #include <cstring> 3 #include <cstdio> 4 #include <algorithm> 5 #include<iostream> 6 #include <cmath> 7 #include<string> 8 #define ll long long 9 #define dscan(a) scanf("%d",&a) 10 #define mem(a,b) memset(a,b,sizeof a) 11 using namespace std; 12 #define MAXL 1105 13 #define Endl endl 14 #define maxn 1000005 15 ll x,y; 16 inline ll read() 17 { 18 ll x=0,f=1;char ch=getchar(); 19 while(ch<‘0‘||ch>‘9‘) {if(ch==‘-‘) f=-1;ch=getchar();} 20 while(ch>=‘0‘&&ch<=‘9‘) {x=10*x+ch-‘0‘;ch=getchar();} 21 return x*f; 22 } 23 int euler(int n) 24 { 25 int i; 26 int res = n,a = n; 27 for(i = 2;i*i <= a; ++i) 28 { 29 if(a%i == 0) 30 { 31 res -= res/i; 32 while(a%i == 0) a/=i; 33 } 34 } 35 if(a > 1) res -= res/a; 36 return res; 37 } 38 int main() 39 { 40 int n; 41 while(cin>>n) 42 { 43 cout<<euler(euler(n))<<endl; 44 } 45 return 0; 46 }
以上是关于POJ 1284 Primitive Roots的主要内容,如果未能解决你的问题,请参考以下文章