POJ 1284 Primitive Roots

Posted lis-

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ 1284 Primitive Roots相关的知识,希望对你有一定的参考价值。

Primitive Roots

We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (x i mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 }. For example, the consecutive powers of 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive root modulo 7. 
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p. 

Input

Each line of the input contains an odd prime numbers p. Input is terminated by the end-of-file seperator.

Output

For each p, print a single number that gives the number of primitive roots in a single line.

Sample Input

23 
31 
79

Sample Output

10 
8 
24
题意:给一个奇素数n,(1,n-1)内的数i,(i^1,i^2,i^3,,,i^n-1)分别%n,正好是(1,2,3,,,n-1),可以不按顺序,求满足这个式子的i的个数
思路:首先他说取余后正好是(1,n-1),n又是奇素数,这让我们想到其实这个就是n中所有与n互质的数,奇素数的欧拉数就是n-1,也就是组成的一个缩系,
然后我们再看那个i^1,,,,i^n-1很像求原根的条件

技术分享图片
就是他这里是g^0开始到n-2次方为止,题目是g^1到n-1,那么我们可不可以进行一个转换呢
g^0我们可以看作1,那么我们可以由欧拉定理得知 g^a(m)=1mod
所以我们可以得知题目就是求一个原根
而求原根数有一个公式 原根数=phi(phi(m))
奇素数的欧拉数就是 奇素数-1 所以在本题中也可以改为 phi(m-1)
#include<cstdio>
#include<cmath>
using namespace std;
typedef long long ll;
ll phi(ll n)
{
    ll sum=n;
    for(int i=2;i*i<=n;i++)
    {
        if(n%i==0)
        {
            sum=sum-sum/i;
            do
            {
                n/=i;
            }while(n%i==0);
        }
    }
    if(n>1) sum=sum-sum/n;
    return sum;
}
int main()
{
    ll n;
    while(scanf("%lld",&n)!=EOF)
    {
        printf("%lld
",phi(phi(n)));
    }
}

 












以上是关于POJ 1284 Primitive Roots的主要内容,如果未能解决你的问题,请参考以下文章

POJ 1284 Primitive Roots

POJ1284 Primitive Roots (原根)

POJ1284:Primitive Roots——题解

poj1284Primitive Roots 欧拉函数

poj1284-Primitive Roots欧拉函数-奇素数的原根个数

原根二连 HDU 4992 && poj 1284 Primitive Roots