POJ 1284 Primitive Roots
Posted lis-
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ 1284 Primitive Roots相关的知识,希望对你有一定的参考价值。
Primitive Roots
We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (x i mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 }. For example, the consecutive powers of 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive root modulo 7.
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.
Input
Each line of the input contains an odd prime numbers p. Input is terminated by the end-of-file seperator.
Output
For each p, print a single number that gives the number of primitive roots in a single line.
Sample Input
23 31 79
Sample Output
10 8 24
题意:给一个奇素数n,(1,n-1)内的数i,(i^1,i^2,i^3,,,i^n-1)分别%n,正好是(1,2,3,,,n-1),可以不按顺序,求满足这个式子的i的个数
思路:首先他说取余后正好是(1,n-1),n又是奇素数,这让我们想到其实这个就是n中所有与n互质的数,奇素数的欧拉数就是n-1,也就是组成的一个缩系,
然后我们再看那个i^1,,,,i^n-1很像求原根的条件
就是他这里是g^0开始到n-2次方为止,题目是g^1到n-1,那么我们可不可以进行一个转换呢
g^0我们可以看作1,那么我们可以由欧拉定理得知 g^a(m)=1mod
所以我们可以得知题目就是求一个原根
而求原根数有一个公式 原根数=phi(phi(m))
奇素数的欧拉数就是 奇素数-1 所以在本题中也可以改为 phi(m-1)
#include<cstdio> #include<cmath> using namespace std; typedef long long ll; ll phi(ll n) { ll sum=n; for(int i=2;i*i<=n;i++) { if(n%i==0) { sum=sum-sum/i; do { n/=i; }while(n%i==0); } } if(n>1) sum=sum-sum/n; return sum; } int main() { ll n; while(scanf("%lld",&n)!=EOF) { printf("%lld ",phi(phi(n))); } }
以上是关于POJ 1284 Primitive Roots的主要内容,如果未能解决你的问题,请参考以下文章