R语言编写自定义函数评估回归模型预测变量的相对重要性(Relative importance)通过在所有可能的子模型中添加一个预测变量而获得的R方的平均增加评估预测变量的重要度并通过点图可视化
Posted Data+Science+Insight
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了R语言编写自定义函数评估回归模型预测变量的相对重要性(Relative importance)通过在所有可能的子模型中添加一个预测变量而获得的R方的平均增加评估预测变量的重要度并通过点图可视化相关的知识,希望对你有一定的参考价值。
R语言编写自定义函数、评估回归模型预测变量的相对重要性(Relative importance)、通过在所有可能的子模型中添加一个预测变量而获得的R方的平均增加、来评估预测变量的重要程度、并通过点图可视化特征重要度
目录
以上是关于R语言编写自定义函数评估回归模型预测变量的相对重要性(Relative importance)通过在所有可能的子模型中添加一个预测变量而获得的R方的平均增加评估预测变量的重要度并通过点图可视化的主要内容,如果未能解决你的问题,请参考以下文章
R语言编写自定义函数计算分类模型评估指标:准确度特异度敏感度PPVNPV数据数据为模型预测后的混淆矩阵比较多个分类模型分类性能(逻辑回归决策树随机森林支持向量机)
R语言广义线性模型函数GLMglm函数构建逻辑回归模型(Logistic regression)构建仿真数据集控制所有其它预测变量进而评估单个预测因子对结果概率的影响
R语言回归模型构建回归模型基本假设(正态性线性独立性方差齐性)回归模型诊断car包诊断回归模型特殊观察样本分析数据变换模型比较特征筛选交叉验证预测变量相对重要度
R语言使用R基础安装中的glm函数构建乳腺癌二分类预测逻辑回归模型分类预测器(分类变量)被自动替换为一组虚拟编码变量summary函数查看检查模型使用table函数计算混淆矩阵评估分类模型性能
R语言使用caret包的train函数构建多元自适应回归样条(MARS)模型模型调优自定义设置trainControl函数和tuneLength参数自定义调优评估指标
R语言使用caret包的train函数构建多元自适应回归样条(MARS)模型模型调优自定义设置tuneGrid参数多个超参数组合调优trainControl函数自定义调优评估指标