动态规划-96. 不同的二叉搜索树

Posted 大树的编程之旅

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了动态规划-96. 不同的二叉搜索树相关的知识,希望对你有一定的参考价值。

点击蓝字关注我,一起成长

动态规划-96. 不同的二叉搜索树
1

题目

给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种?

2

样例

动态规划-96. 不同的二叉搜索树

3

样例解读

首先是理解何为二叉搜索树:

二叉搜索树(又:二叉查找树,二叉排序树)它或者是一棵空树,或者是具有下列性质的二叉树:若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;它的左、右子树也分别为二叉排序树。

可得:

(1)由1 - n 都能够作为根结点构成二叉搜索树!
(2)二叉搜索树的根结点的左右子树都是二叉搜索树!

拿到题目的第一想法:画图!于是我们可以得到:

n == 1以及 n == 2的情况如下:

动态规划-96. 不同的二叉搜索树

由上可以看出,n == 2的时候,作为根结点有两种选择,一种是1,一种是2;

当 n = 3时:

动态规划-96. 不同的二叉搜索树

结合上面对二叉搜索树的分析,我们发现:

假设根结点是 i (1 <= i <= n),可得:

左子树由 [ 1, i - 1]构成,右子树由 [ i + 1, n] 构成!

而且左右子树的结构都是二叉搜索树,那么相当于右子树[ i + 1, n] 如果只看结构的话,也会跟 [1 , n - i ] 的结构相同,所以我们可以得到:

动态规划-96. 不同的二叉搜索树

当前以 i 为根结点的二叉搜索树的种类有:

root[i] = root[i - 1] * root[n - i ] ;//左右子树的种类相乘

求1 - n 所能够组合成的二叉搜索树的总种类数为:

dp[n] = root[1] + root[2] + ...... + root[n];

其中 dp[1] = root[1] = 1;

4

解答与代码

答案:

class Solution { public int numTrees(int n) { int[] dp = new int[n+1]; dp[0] = 1; dp[1] = 1; for(int i=2;i<=n;i++){ if(i % 2 != 0){ // 3/2 = 1,需要手动计算2即是中间这一个 for(int j = 1;j <= i/2;j++){ dp[i] += dp[i - j] * dp[j - 1]; //是两边相乘 } //先翻倍 dp[i] *= 2; //计算中间值 dp[i] += dp[i - (i / 2 + 1)] * dp[i / 2 ]; }else{ for(int j = 1;j <= i/2;j++){ dp[i] += dp[i - j] * dp[j - 1]; } //翻倍 dp[i] *= 2; } } return dp[n]; }}
动态规划-96. 不同的二叉搜索树

5

预告

下次专题:位运算

明天预告题目:1290. 二进制链表转整数



● 扫码关注我


题目素材来源:力扣(LeetCode)

链接:https://leetcode-cn.com/problems/unique-binary-search-trees/

欢我们的内容就点“在看”分享给小伙伴哦

以上是关于动态规划-96. 不同的二叉搜索树的主要内容,如果未能解决你的问题,请参考以下文章

LeetCode 96 不同的二叉搜索树[数学 动态规划] HERODING的LeetCode之路

96. 不同的二叉搜索树-动态规划

LeetCode 96.不同的二叉搜索树

96. 不同的二叉搜索树

Leetcode 96.不同的二叉搜索树

LeetCode 96. 不同的二叉搜索树 | Python