c_cpp 对称矩阵和非对称矩阵的特征值/向量
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了c_cpp 对称矩阵和非对称矩阵的特征值/向量相关的知识,希望对你有一定的参考价值。
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define RADIX 2.0
/*************************
* balance a real matrix *
*************************/
static void balanc(double **a, int n)
{
int i, j, last = 0;
double s, r, g, f, c, sqrdx;
sqrdx = RADIX * RADIX;
while (last == 0) {
last = 1;
for (i = 0; i < n; i++) {
r = c = 0.0;
for (j = 0; j < n; j++)
if (j != i) {
c += fabs(a[j][i]);
r += fabs(a[i][j]);
}
if (c != 0.0 && r != 0.0) {
g = r / RADIX;
f = 1.0;
s = c + r;
while (c < g) {
f *= RADIX;
c *= sqrdx;
}
g = r * RADIX;
while (c > g) {
f /= RADIX;
c /= sqrdx;
}
if ((c + r) / f < 0.95 * s) {
last = 0;
g = 1.0 / f;
for (j = 0; j < n; j++)
a[i][j] *= g;
for (j = 0; j < n; j++)
a[j][i] *= f;
}
}
}
}
}
#define SWAP(a,b) do { double t = (a); (a) = (b); (b) = t; } while (0)
/*****************************************************
* convert a non-symmetric matrix to Hessenberg form *
*****************************************************/
static void elmhes(double **a, int n)
{
int i, j, m;
double y, x;
for (m = 1; m < n - 1; m++) {
x = 0.0;
i = m;
for (j = m; j < n; j++) {
if (fabs(a[j][m - 1]) > fabs(x)) {
x = a[j][m - 1];
i = j;
}
}
if (i != m) {
for (j = m - 1; j < n; j++)
SWAP(a[i][j], a[m][j]);
for (j = 0; j < n; j++)
SWAP(a[j][i], a[j][m]);
}
if (x != 0.0) {
for (i = m + 1; i < n; i++) {
if ((y = a[i][m - 1]) != 0.0) {
y /= x;
a[i][m - 1] = y;
for (j = m; j < n; j++)
a[i][j] -= y * a[m][j];
for (j = 0; j < n; j++)
a[j][m] += y * a[j][i];
}
}
}
}
}
#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a))
/**************************************
* QR algorithm for Hessenberg matrix *
**************************************/
static void hqr(double **a, int n, double *wr, double *wi)
{
int nn, m, l, k, j, its, i, mmin;
double z, y, x, w, v, u, t, s, r, q, p, anorm;
p = q = r = 0.0;
anorm = 0.0;
for (i = 0; i < n; i++)
for (j = i - 1 > 0 ? i - 1 : 0; j < n; j++)
anorm += fabs(a[i][j]);
nn = n - 1;
t = 0.0;
while (nn >= 0) {
its = 0;
do {
for (l = nn; l > 0; l--) {
s = fabs(a[l - 1][l - 1]) + fabs(a[l][l]);
if (s == 0.0)
s = anorm;
if (fabs(a[l][l - 1]) + s == s) {
a[l][l - 1] = 0.0;
break;
}
}
x = a[nn][nn];
if (l == nn) {
wr[nn] = x + t;
wi[nn--] = 0.0;
} else {
y = a[nn - 1][nn - 1];
w = a[nn][nn - 1] * a[nn - 1][nn];
if (l == nn - 1) {
p = 0.5 * (y - x);
q = p * p + w;
z = sqrt(fabs(q));
x += t;
if (q >= 0.0) {
z = p + SIGN(z, p);
wr[nn - 1] = wr[nn] = x + z;
if (z != 0.0)
wr[nn] = x - w / z;
wi[nn - 1] = wi[nn] = 0.0;
} else {
wr[nn - 1] = wr[nn] = x + p;
wi[nn - 1] = -(wi[nn] = z);
}
nn -= 2;
} else {
if (its == 30) {
fprintf(stderr, "[hqr] too many iterations.\n");
break;
}
if (its == 10 || its == 20) {
t += x;
for (i = 0; i < nn + 1; i++)
a[i][i] -= x;
s = fabs(a[nn][nn - 1]) + fabs(a[nn - 1][nn - 2]);
y = x = 0.75 * s;
w = -0.4375 * s * s;
}
++its;
for (m = nn - 2; m >= l; m--) {
z = a[m][m];
r = x - z;
s = y - z;
p = (r * s - w) / a[m + 1][m] + a[m][m + 1];
q = a[m + 1][m + 1] - z - r - s;
r = a[m + 2][m + 1];
s = fabs(p) + fabs(q) + fabs(r);
p /= s;
q /= s;
r /= s;
if (m == l)
break;
u = fabs(a[m][m - 1]) * (fabs(q) + fabs(r));
v = fabs(p) * (fabs(a[m - 1][m - 1]) + fabs(z) + fabs(a[m + 1][m + 1]));
if (u + v == v)
break;
}
for (i = m; i < nn - 1; i++) {
a[i + 2][i] = 0.0;
if (i != m)
a[i + 2][i - 1] = 0.0;
}
for (k = m; k < nn; k++) {
if (k != m) {
p = a[k][k - 1];
q = a[k + 1][k - 1];
r = 0.0;
if (k + 1 != nn)
r = a[k + 2][k - 1];
if ((x = fabs(p) + fabs(q) + fabs(r)) != 0.0) {
p /= x;
q /= x;
r /= x;
}
}
if ((s = SIGN(sqrt(p * p + q * q + r * r), p)) != 0.0) {
if (k == m) {
if (l != m)
a[k][k - 1] = -a[k][k - 1];
} else
a[k][k - 1] = -s * x;
p += s;
x = p / s;
y = q / s;
z = r / s;
q /= p;
r /= p;
for (j = k; j < nn + 1; j++) {
p = a[k][j] + q * a[k + 1][j];
if (k + 1 != nn) {
p += r * a[k + 2][j];
a[k + 2][j] -= p * z;
}
a[k + 1][j] -= p * y;
a[k][j] -= p * x;
}
mmin = nn < k + 3 ? nn : k + 3;
for (i = l; i < mmin + 1; i++) {
p = x * a[i][k] + y * a[i][k + 1];
if (k != (nn)) {
p += z * a[i][k + 2];
a[i][k + 2] -= p * r;
}
a[i][k + 1] -= p * q;
a[i][k] -= p;
}
}
}
}
}
} while (l + 1 < nn);
}
}
/*********************************************************
* calculate eigenvalues for a non-symmetric real matrix *
*********************************************************/
void n_eigen(double *_a, int n, double *wr, double *wi)
{
int i;
double **a = (double **) calloc(n, sizeof(void *));
for (i = 0; i < n; ++i)
a[i] = _a + i * n;
balanc(a, n);
elmhes(a, n);
hqr(a, n, wr, wi);
free(a);
}
/* convert a symmetric matrix to tridiagonal form */
#define SQR(a) ((a)*(a))
static double pythag(double a, double b)
{
double absa, absb;
absa = fabs(a);
absb = fabs(b);
if (absa > absb) return absa * sqrt(1.0 + SQR(absb / absa));
else return (absb == 0.0 ? 0.0 : absb * sqrt(1.0 + SQR(absa / absb)));
}
static void tred2(double **a, int n, double *d, double *e)
{
int l, k, j, i;
double scale, hh, h, g, f;
for (i = n - 1; i > 0; i--) {
l = i - 1;
h = scale = 0.0;
if (l > 0) {
for (k = 0; k < l + 1; k++)
scale += fabs(a[i][k]);
if (scale == 0.0)
e[i] = a[i][l];
else {
for (k = 0; k < l + 1; k++) {
a[i][k] /= scale;
h += a[i][k] * a[i][k];
}
f = a[i][l];
g = (f >= 0.0 ? -sqrt(h) : sqrt(h));
e[i] = scale * g;
h -= f * g;
a[i][l] = f - g;
f = 0.0;
for (j = 0; j < l + 1; j++) {
/* Next statement can be omitted if eigenvectors not wanted */
a[j][i] = a[i][j] / h;
g = 0.0;
for (k = 0; k < j + 1; k++)
g += a[j][k] * a[i][k];
for (k = j + 1; k < l + 1; k++)
g += a[k][j] * a[i][k];
e[j] = g / h;
f += e[j] * a[i][j];
}
hh = f / (h + h);
for (j = 0; j < l + 1; j++) {
f = a[i][j];
e[j] = g = e[j] - hh * f;
for (k = 0; k < j + 1; k++)
a[j][k] -= (f * e[k] + g * a[i][k]);
}
}
} else
e[i] = a[i][l];
d[i] = h;
}
/* Next statement can be omitted if eigenvectors not wanted */
d[0] = 0.0;
e[0] = 0.0;
/* Contents of this loop can be omitted if eigenvectors not wanted except for statement d[i]=a[i][i]; */
for (i = 0; i < n; i++) {
l = i;
if (d[i] != 0.0) {
for (j = 0; j < l; j++) {
g = 0.0;
for (k = 0; k < l; k++)
g += a[i][k] * a[k][j];
for (k = 0; k < l; k++)
a[k][j] -= g * a[k][i];
}
}
d[i] = a[i][i];
a[i][i] = 1.0;
for (j = 0; j < l; j++)
a[j][i] = a[i][j] = 0.0;
}
}
/* calculate the eigenvalues and eigenvectors of a symmetric tridiagonal matrix */
static void tqli(double *d, double *e, int n, double **z)
{
int m, l, iter, i, k;
double s, r, p, g, f, dd, c, b;
for (i = 1; i < n; i++)
e[i - 1] = e[i];
e[n - 1] = 0.0;
for (l = 0; l < n; l++) {
iter = 0;
do {
for (m = l; m < n - 1; m++) {
dd = fabs(d[m]) + fabs(d[m + 1]);
if (fabs(e[m]) + dd == dd)
break;
}
if (m != l) {
if (iter++ == 30) {
fprintf(stderr, "[tqli] Too many iterations in tqli.\n");
break;
}
g = (d[l + 1] - d[l]) / (2.0 * e[l]);
r = pythag(g, 1.0);
g = d[m] - d[l] + e[l] / (g + SIGN(r, g));
s = c = 1.0;
p = 0.0;
for (i = m - 1; i >= l; i--) {
f = s * e[i];
b = c * e[i];
e[i + 1] = (r = pythag(f, g));
if (r == 0.0) {
d[i + 1] -= p;
e[m] = 0.0;
break;
}
s = f / r;
c = g / r;
g = d[i + 1] - p;
r = (d[i] - g) * s + 2.0 * c * b;
d[i + 1] = g + (p = s * r);
g = c * r - b;
/* Next loop can be omitted if eigenvectors not wanted */
for (k = 0; k < n; k++) {
f = z[k][i + 1];
z[k][i + 1] = s * z[k][i] + c * f;
z[k][i] = c * z[k][i] - s * f;
}
}
if (r == 0.0 && i >= l)
continue;
d[l] -= p;
e[l] = g;
e[m] = 0.0;
}
} while (m != l);
}
}
int n_eigen_symm(double *_a, int n, double *eval)
{
double **a, *e;
int i;
a = (double**)calloc(n, sizeof(void*));
e = (double*)calloc(n, sizeof(double));
for (i = 0; i < n; ++i) a[i] = _a + i * n;
tred2(a, n, eval, e);
tqli(eval, e, n, a);
free(a); free(e);
return 0;
}
#ifdef LH3_EIGEN_MAIN
int main(void)
{
int i, j;
static double u[5], v[5];
static double a[5][5] = {{1.0, 6.0, -3.0, -1.0, 7.0},
{8.0, -15.0, 18.0, 5.0, 4.0}, {-2.0, 11.0, 9.0, 15.0, 20.0},
{-13.0, 2.0, 21.0, 30.0, -6.0}, {17.0, 22.0, -5.0, 3.0, 6.0}};
static double b[5][5]={ {10.0,1.0,2.0,3.0,4.0},
{1.0,9.0,-1.0,2.0,-3.0},
{2.0,-1.0,7.0,3.0,-5.0},
{3.0,2.0,3.0,12.0,-1.0},
{4.0,-3.0,-5.0,-1.0,15.0}};
printf("MAT H IS:\n");
for (i = 0; i <= 4; i++) {
for (j = 0; j <= 4; j++)
printf("%13.7e ", a[i][j]);
printf("\n");
}
printf("\n");
n_eigen(a[0], 5, u, v);
for (i = 0; i <= 4; i++)
printf("%13.7e +J %13.7e\n", u[i], v[i]);
printf("\n");
printf("\n\n");
n_eigen_symm(b[0], 5, u);
for (i = 0; i <= 4; i++)
printf("%13.7e\n", u[i]);
printf("\n");
for (i = 0; i <= 4; i++) {
for (j = 0; j <= 4; j++)
printf("%12.6e ", b[i][j]);
printf("\n");
}
printf("\n");
return 0;
}
/* correct output:
4.2961008e+01 +J 0.0000000e+00
-6.6171383e-01 +J 0.0000000e+00
-1.5339638e+01 +J -6.7556929e+00
-1.5339638e+01 +J 6.7556929e+00
1.9379983e+01 +J 0.0000000e+00
*/
#endif
以上是关于c_cpp 对称矩阵和非对称矩阵的特征值/向量的主要内容,如果未能解决你的问题,请参考以下文章