雅可比算法求矩阵的特征值和特征向量

Posted beginend

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了雅可比算法求矩阵的特征值和特征向量相关的知识,希望对你有一定的参考价值。

目的

求一个实对称矩阵的所有特征值和特征向量。

前置知识

对于一个实对称矩阵(A),必存在对角阵(D)和正交阵(U)满足[D=U^TAU](D)的对角线元素为(A)的特征值,(U)的列向量为(A)的特征向量。

定义(n)阶旋转矩阵[G(p,q, heta)= egin{bmatrix} 1 & & & & & cdots& & & & & 0 &ddots & & & & & & & & & & &1 & & & & & & & & & & &cos heta & & & &-sin heta & & & & & & &1 & &0 & & & & & & & & &ddots & & & & & & & & &0 & &1 & & & & & & &sin heta & & & &cos heta & & & & & & & & & & &1 & & & & & & & & & & &ddots && & & & & & & &0 & &1 end{bmatrix} ]即在单位矩阵的基础上,修改(a_{pp}=a_{qq}=cos heta,a_{qp}=-a_{pq}=sin heta)

对于(n)阶向量(alpha)(alphacdot G(p,q, heta))的几何意义是把(alpha)在与第(p)维坐标轴和第(q)维坐标轴平行的平面内旋转角度( heta),并且旋转后的模长保持不变。

算法原理

大概思路使通过旋转变换使非对角线上的元素不断变小,最后得到与原矩阵相似的对角矩阵。

每次找到矩阵(A)绝对值最大的的非对角线元素,设为(a_{pq}),令(U=G(p,q, heta)),将(A)变换为(U^TAU)

变换后的值为
技术图片

通过令(b_{p,q}=0)解得[ heta=frac{1}{2}arctanfrac{2a_{pq}}{a_{qq}-a_{pp}}]特别地当(a_{qq}=a_{pp})( heta=frac{pi}{4})

注意到旋转操作并不会改变每个行向量或列向量的模长,即矩阵(A)的F-范数(||A||_F=sqrt{sum_isum_ja_{ij}^2})是不变的,并且通过计算可以得出[b_{ip}^2+b_{iq}^2=a_{ip}^2+a_{iq}^2]从而可以得知非对角线元素的平方和变小,对角线上元素的平方和增大,故非主对角线上元素的平方和收敛。

算法流程

(1)令矩阵(T=E),即初始化单位矩阵

(2)找到(A)中绝对值最大的非对角选元素(a_{pq})

(3)找到对应的角度( heta),构造矩阵(U=G(p,q, heta))

(4)令(A=U^TAU,T=TU)

(5)不停地重复(2)到(4),直到(a_{pq}<epsilon)或迭代次数超过某个限定值,则(A)的对角线元素近似等于(A)的特征值,(T)的列向量为(A)的特征向量

代码

#include<bits/stdc++.h>
using namespace std;

const int N=1005;
const double eps=1e-5;
const int lim=100;

int n,id[N];
double key[N],mat[N][N],EigVal[N],EigVec[N][N],tmpEigVec[N][N];

bool cmpEigVal(int x,int y)
{
    return key[x]>key[y];
}

void Find_Eigen(int n,double (*a)[N],double *EigVal,double (*EigVec)[N])
{
    for (int i=1;i<=n;i++)
        for (int j=1;j<=n;j++)
            EigVec[i][j]=0;
    for (int i=1;i<=n;i++) EigVec[i][i]=1.0;
    int count=0;
    while (1)
    {
        //统计迭代次数 
        count++;
        //找绝对值最大的元素 
        double mx_val=0;
        int row_id,col_id;
        for (int i=1;i<n;i++)
            for (int j=i+1;j<=n;j++)
                if (fabs(a[i][j])>mx_val) mx_val=fabs(a[i][j]),row_id=i,col_id=j;
        if (mx_val<eps||count>lim) break;
        //进行旋转变换 
        int p=row_id,q=col_id;
        double Apq=a[p][q],App=a[p][p],Aqq=a[q][q];
        double theta=0.5*atan2(-2.0*Apq,Aqq-App);
        double sint=sin(theta),cost=cos(theta); 
        double sin2t=sin(2.0*theta),cos2t=cos(2.0*theta);
        a[p][p]=App*cost*cost+Aqq*sint*sint+2.0*Apq*cost*sint;
        a[q][q]=App*sint*sint+Aqq*cost*cost-2.0*Apq*cost*sint;
        a[p][q]=a[q][p]=0.5*(Aqq-App)*sin2t+Apq*cos2t;
        for (int i=1;i<=n;i++)
            if (i!=p&&i!=q)
            {
                double u=a[p][i],v=a[q][i];
                a[p][i]=u*cost+v*sint;a[q][i]=v*cost-u*sint;
                u=a[i][p],v=a[i][q];
                a[i][p]=u*cost+v*sint;a[i][q]=v*cost-u*sint;
            }
        //计算特征向量 
        for (int i=1;i<=n;i++)
        {
            double u=EigVec[i][p],v=EigVec[i][q];
            EigVec[i][p]=u*cost+v*sint;EigVec[i][q]=v*cost-u*sint;
        }
    }
    //对特征值排序 
    for (int i=1;i<=n;i++) id[i]=i,key[i]=a[i][i];
    std::sort(id+1,id+n+1,cmpEigVal);
    for (int i=1;i<=n;i++)
    {
        EigVal[i]=a[id[i]][id[i]];
        for (int j=1;j<=n;j++)
            tmpEigVec[j][i]=EigVec[j][id[i]];
    }
    for (int i=1;i<=n;i++)
        for (int j=1;j<=n;j++)
            EigVec[i][j]=tmpEigVec[i][j];
    //特征向量为列向量 
}

int main()
{
    scanf("%d",&n);
    for (int i=1;i<=n;i++)
        for (int j=1;j<=n;j++)
            scanf("%lf",&mat[i][j]);
    Find_Eigen(n,mat,EigVal,EigVec);
    printf("EigenValues = ");
    for (int i=1;i<=n;i++) printf("%lf ",EigVal[i]);
    printf("
EigenVector =
");
    for (int i=1;i<=n;i++)
        for (int j=1;j<=n;j++)
            printf("%lf%c",EigVec[i][j],j==n?'
':' ');
    return 0;
}

以上是关于雅可比算法求矩阵的特征值和特征向量的主要内容,如果未能解决你的问题,请参考以下文章

矩阵如何求幂?

有没有大神能用MATLAB做一个迭代法求矩阵的特征值和特征向量的程序呀

一元函数的梯度和雅可比矩阵是否想用

jacobian矩阵是啥

关于MATLAB自己编程求解特征值的问题?(比如QR法,幂法,牙可比跌代法,等)请教高手

雅克比矩阵、海森矩阵