决策树算法原理
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了决策树算法原理相关的知识,希望对你有一定的参考价值。
参考技术A 决策树是通过一系列规则对数据进行分类的过程。它提供一种在什么条件下会得到什么值的类似规则的方法。决策树分为分类树和回归树两种,分类树对离散变量做决策树,回归树对连续变量做决策树。如果不考虑效率等,那么样本所有特征的判断级联起来终会将某一个样本分到一个类终止块上。实际上,样本所有特征中有一些特征在分类时起到决定性作用,决策树的构造过程就是找到这些具有决定性作用的特征,根据其决定性程度来构造一个倒立的树--决定性作用最大的那个特征作为根节点,然后递归找到各分支下子数据集中次大的决定性特征,直至子数据集中所有数据都属于同一类。所以,构造决策树的过程本质上就是根据数据特征将数据集分类的递归过程,我们需要解决的第一个问题就是,当前数据集上哪个特征在划分数据分类时起决定性作用。
一棵决策树的生成过程主要分为以下3个部分:
特征选择:特征选择是指从训练数据中众多的特征中选择一个特征作为当前节点的分裂标准,如何选择特征有着很多不同量化评估标准标准,从而衍生出不同的决策树算法。
决策树生成: 根据选择的特征评估标准,从上至下递归地生成子节点,直到数据集不可分则停止决策树停止生长。 树结构来说,递归结构是最容易理解的方式。
剪枝:决策树容易过拟合,一般来需要剪枝,缩小树结构规模、缓解过拟合。剪枝技术有预剪枝和后剪枝两种。
划分数据集的最大原则是:使无序的数据变的有序。如果一个训练数据中有20个特征,那么选取哪个做划分依据?这就必须采用量化的方法来判断,量化划分方法有多重,其中一项就是“信息论度量信息分类”。基于信息论的决策树算法有ID3、CART和C4.5等算法,其中C4.5和CART两种算法从ID3算法中衍生而来。
CART和C4.5支持数据特征为连续分布时的处理,主要通过使用二元切分来处理连续型变量,即求一个特定的值-分裂值:特征值大于分裂值就走左子树,或者就走右子树。这个分裂值的选取的原则是使得划分后的子树中的“混乱程度”降低,具体到C4.5和CART算法则有不同的定义方式。
ID3算法由Ross Quinlan发明,建立在“奥卡姆剃刀”的基础上:越是小型的决策树越优于大的决策树(be simple简单理论)。ID3算法中根据信息论的信息增益评估和选择特征,每次选择信息增益最大的特征做判断模块。ID3算法可用于划分标称型数据集,没有剪枝的过程,为了去除过度数据匹配的问题,可通过裁剪合并相邻的无法产生大量信息增益的叶子节点(例如设置信息增益阀值)。使用信息增益的话其实是有一个缺点,那就是它偏向于具有大量值的属性--就是说在训练集中,某个属性所取的不同值的个数越多,那么越有可能拿它来作为分裂属性,而这样做有时候是没有意义的,另外ID3不能处理连续分布的数据特征,于是就有了C4.5算法。CART算法也支持连续分布的数据特征。
C4.5是ID3的一个改进算法,继承了ID3算法的优点。C4.5算法用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足在树构造过程中进行剪枝;能够完成对连续属性的离散化处理;能够对不完整数据进行处理。C4.5算法产生的分类规则易于理解、准确率较高;但效率低,因树构造过程中,需要对数据集进行多次的顺序扫描和排序。也是因为必须多次数据集扫描,C4.5只适合于能够驻留于内存的数据集。
CART算法的全称是Classification And Regression Tree,采用的是Gini指数(选Gini指数最小的特征s)作为分裂标准,同时它也是包含后剪枝操作。ID3算法和C4.5算法虽然在对训练样本集的学习中可以尽可能多地挖掘信息,但其生成的决策树分支较大,规模较大。为了简化决策树的规模,提高生成决策树的效率,就出现了根据GINI系数来选择测试属性的决策树算法CART。
决策树算法的优点:
(1)便于理解和解释,树的结构可以可视化出来
(2)基本不需要预处理,不需要提前归一化,处理缺失值
(3)使用决策树预测的代价是O(log2m),m为样本数
(4)能够处理数值型数据和分类数据
(5)可以处理多维度输出的分类问题
(6)可以通过数值统计测试来验证该模型,这使解释验证该模型的可靠性成为可能
(7)即使该模型假设的结果与真实模型所提供的数据有些违反,其表现依旧良好
决策树算法的缺点:
(1)决策树模型容易产生一个过于复杂的模型,这样的模型对数据的泛化性能会很差。这就是所谓的过拟合.一些策略像剪枝、设置叶节点所需的最小样本数或设置数的最大深度是避免出现该问题最为有效地方法。
(2)决策树可能是不稳定的,因为数据中的微小变化可能会导致完全不同的树生成。这个问题可以通过决策树的集成来得到缓解。
(3)在多方面性能最优和简单化概念的要求下,学习一棵最优决策树通常是一个NP难问题。因此,实际的决策树学习算法是基于启发式算法,例如在每个节点进行局部最优决策的贪心算法。这样的算法不能保证返回全局最优决策树。这个问题可以通过集成学习来训练多棵决策树来缓解,这多棵决策树一般通过对特征和样本有放回的随机采样来生成。
(4)有些概念很难被决策树学习到,因为决策树很难清楚的表述这些概念。例如XOR,奇偶或者复用器的问题。
(5)如果某些类在问题中占主导地位会使得创建的决策树有偏差。因此,我们建议在拟合前先对数据集进行平衡。
(1)当数据的特征维度很高而数据量又很少的时候,这样的数据在构建决策树的时候往往会过拟合。所以我们要控制样本数量和特征的之间正确的比率;
(2)在构建决策树之前,可以考虑预先执行降维技术(如PCA,ICA或特征选择),以使我们生成的树更有可能找到具有辨别力的特征;
(3)在训练一棵树的时候,可以先设置max_depth=3来将树可视化出来,以便我们找到树是怎样拟合我们数据的感觉,然后在增加我们树的深度;
(4)树每增加一层,填充所需的样本数量是原来的2倍,比如我们设置了最小叶节点的样本数量,当我们的树层数增加一层的时候,所需的样本数量就会翻倍,所以我们要控制好树的最大深度,防止过拟合;
(5)使用min_samples_split(节点可以切分时拥有的最小样本数) 和 min_samples_leaf(最小叶节点数)来控制叶节点的样本数量。这两个值设置的很小通常意味着我们的树过拟合了,而设置的很大意味着我们树预测的精度又会降低。通常设置min_samples_leaf=5;
(6)当树的类比不平衡的时候,在训练之前一定要先平很数据集,防止一些类别大的类主宰了决策树。可以通过采样的方法将各个类别的样本数量到大致相等,或者最好是将每个类的样本权重之和(sample_weight)规范化为相同的值。另请注意,基于权重的预剪枝标准(如min_weight_fraction_leaf)将比不知道样本权重的标准(如min_samples_leaf)更少偏向主导类别。
(7)如果样本是带权重的,使用基于权重的预剪枝标准将更简单的去优化树结构,如mn_weight_fraction_leaf,这确保了叶节点至少包含了样本权值总体总和的一小部分;
(8)在sklearn中所有决策树使用的数据都是np.float32类型的内部数组。如果训练数据不是这种格式,则将复制数据集,这样会浪费计算机资源。
(9)如果输入矩阵X非常稀疏,建议在调用fit函数和稀疏csr_matrix之前转换为稀疏csc_matrix,然后再调用predict。 当特征在大多数样本中具有零值时,与密集矩阵相比,稀疏矩阵输入的训练时间可以快几个数量级。
机器学习算法:决策树算法简介以及分类原理
学习目标
- 知道什么是决策树
- 知道如何求解信息熵
- 知道信息增益的求解过程
- 知道信息增益率的求解过程
- 知道基尼系数的求解过程
- 知道信息增益、信息增益率和基尼系数三者之间的区别、联系
决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-else结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法
决策树:是一种树形结构,其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出,最后每个叶节点代表一种分类结果,本质是一颗由多个判断节点组成的树。
怎么理解这句话?通过一个对话例子
想一想这个女生为什么把年龄放在最上面判断!
上面案例是女生通过定性的主观意识,把年龄放到最上面,那么如果需要对这一过程进行量化,该如何处理呢?
此时需要用到信息论中的知识:信息熵,信息增益
小结
- 决策树定义:
- 是一种树形结构,
- 本质是一颗由多个判断节点组成的树
1 熵
1.1 概念
物理学上,熵 Entropy 是“混乱”程度的量度。
系统越有序,熵值越低;系统越混乱或者分散,熵值越高。
1948年香农提出了信息熵(Entropy)的概念。
- 信息理论:
1、从信息的完整性上进行的描述:
当系统的有序状态一致时,数据越集中的地方熵值越小,数据越分散的地方熵值越大。
2、从信息的有序性上进行的描述:
当数据量一致时,系统越有序,熵值越低;系统越混乱或者分散,熵值越高。
"信息熵" (information entropy)是度量样本集合纯度最常用的一种指标。
假定当前样本集合 D 中第 k 类样本所占的比例为 p_kpk (k = 1, 2,. . . , |y|) ,
D为样本的所有数量,C^kCk为第k类样本的数量。
则 D的信息熵定义为((log是以2为底,lg是以10为底):
其中:Ent(D) 的值越小,则 D 的纯度越高.
1.2 案例
课堂案例:
假设我们没有看世界杯的比赛,但是想知道哪支球队会是冠军,
我们只能猜测某支球队是或不是冠军,然后观众用对或不对来回答,
我们想要猜测次数尽可能少,你会用什么方法?
答案:
二分法:
假如有 16 支球队,分别编号,先问是否在 1-8 之间,如果是就继续问是否在 1-4 之间,
以此类推,直到最后判断出冠军球队是哪支。
如果球队数量是 16,我们需要问 4 次来得到最后的答案。那么世界冠军这条消息的信息熵就是 4。
那么信息熵等于4,是如何进行计算的呢?
Ent(D) = -(p1 * logp1 + p2 * logp2 + ... + p16 * logp16),
其中 p1, ..., p16 分别是这 16 支球队夺冠的概率。
当每支球队夺冠概率相等都是 1/16 的时:Ent(D) = -(16 * 1/16 * log1/16) = 4
每个事件概率相同时,熵最大,这件事越不确定。
随堂练习:
篮球比赛里,有4个球队 A,B,C,D ,获胜概率分别为1/2, 1/4, 1/8, 1/8
求Ent(D)
答案:
2 决策树的划分依据一----信息增益
2.1 概念
信息增益:以某特征划分数据集前后的熵的差值。熵可以表示样本集合的不确定性,熵越大,样本的不确定性就越大。因此可以使用划分前后集合熵的差值来衡量使用当前特征对于样本集合D划分效果的好坏。
信息增益 = entroy(前) - entroy(后)
注:信息增益表示得知特征X的信息而使得类Y的信息熵减少的程度
- 定义与公式
假定离散属性a有 V 个可能的取值:
假设离散属性性别有2(男,女)个可能的取值
若使用a来对样本集 D 进行划分,则会产生 V 个分支结点,
其中:
其中:
2.2 案例:
如下图,第一列为论坛号码,第二列为性别,第三列为活跃度,最后一列用户是否流失。
我们要解决一个问题:性别和活跃度两个特征,哪个对用户流失影响更大?
通过计算信息增益可以解决这个问题,统计上右表信息
其中Positive为正样本(已流失),Negative为负样本(未流失),下面的数值为不同划分下对应的人数。
可得到三个熵:
a.计算类别信息熵
整体熵:
活跃度的信息增益比性别的信息增益大,也就是说,活跃度对用户流失的影响比性别大。在做特征选择或者数据分析的时候,我们应该重点考察活跃度这个指标。
3 决策树的划分依据二----信息增益率
3.1 概念
在上面的介绍中,我们有意忽略了"编号"这一列.若把"编号"也作为一个候选划分属性,则根据信息增益公式可计算出它的信息增益为 0.9182,远大于其他候选划分属性。
计算每个属性的信息熵过程中,我们发现,该属性的值为0, 也就是其信息增益为0.9182. 但是很明显这么分类,最后出现的结果不具有泛化效果.无法对新样本进行有效预测.
实际上,信息增益准则对可取值数目较多的属性有所偏好,为减少这种偏好可能带来的不利影响,著名的 C4.5 决策树算法 [Quinlan, 1993J 不直接使用信息增益,而是使用"增益率" (gain ratio) 来选择最优划分属性.
增益率:增益率是用前面的信息增益Gain(D, a)和属性a对应的"固有值"(intrinsic value) [Quinlan , 1993J的比值来共同定义的。
3.2 案例
3.2.1 案例一
a.计算类别信息熵
b.计算性别属性的信息熵(性别、活跃度)
c.计算活跃度的信息增益(性别、活跃度)
d.计算属性分裂信息度量
用分裂信息度量来考虑某种属性进行分裂时分支的数量信息和尺寸信息,我们把这些信息称为属性的内在信息(instrisic information)。信息增益率用信息增益/内在信息,会导致属性的重要性随着内在信息的增大而减小(也就是说,如果这个属性本身不确定性就很大,那我就越不倾向于选取它),这样算是对单纯用信息增益有所补偿。
e.计算信息增益率
活跃度的信息增益率更高一些,所以在构建决策树的时候,优先选择
通过这种方式,在选取节点的过程中,我们可以降低取值较多的属性的选取偏好。
3.2.2 案例二
如下图,第一列为天气,第二列为温度,第三列为湿度,第四列为风速,最后一列该活动是否进行。
我们要解决:根据下面表格数据,判断在对应天气下,活动是否会进行?
该数据集有四个属性,属性集合A= 天气,温度,湿度,风速, 类别标签有两个,类别集合L=进行,取消。
a.计算类别信息熵
类别信息熵表示的是所有样本中各种类别出现的不确定性之和。根据熵的概念,熵越大,不确定性就越大,把事情搞清楚所需要的信息量就越多。
b.计算每个属性的信息熵
每个属性的信息熵相当于一种条件熵。他表示的是在某种属性的条件下,各种类别出现的不确定性之和。属性的信息熵越大,表示这个属性中拥有的样本类别越不“纯”。
c.计算信息增益
信息增益的 = 熵 - 条件熵,在这里就是 类别信息熵 - 属性信息熵,它表示的是信息不确定性减少的程度。如果一个属性的信息增益越大,就表示用这个属性进行样本划分可以更好的减少划分后样本的不确定性,当然,选择该属性就可以更快更好地完成我们的分类目标。
信息增益就是ID3算法的特征选择指标。
假设我们把上面表格1的数据前面添加一列为"编号",取值(1--14). 若把"编号"也作为一个候选划分属性,则根据前面步骤: 计算每个属性的信息熵过程中,我们发现,该属性的值为0, 也就是其信息增益为0.940. 但是很明显这么分类,最后出现的结果不具有泛化效果.此时根据信息增益就无法选择出有效分类特征。所以,C4.5选择使用信息增益率对ID3进行改进。
d.计算属性分裂信息度量
用分裂信息度量来考虑某种属性进行分裂时分支的数量信息和尺寸信息,我们把这些信息称为属性的内在信息(instrisic information)。信息增益率用信息增益/内在信息,会导致属性的重要性随着内在信息的增大而减小(也就是说,如果这个属性本身不确定性就很大,那我就越不倾向于选取它),这样算是对单纯用信息增益有所补偿。
e.计算信息增益率
天气的信息增益率最高,选择天气为分裂属性。发现分裂了之后,天气是“阴”的条件下,类别是”纯“的,所以把它定义为叶子节点,选择不“纯”的结点继续分裂。
在子结点当中重复过程1~5,直到所有的叶子结点足够"纯"。
现在我们来总结一下C4.5的算法流程
while(当前节点"不纯"):
1.计算当前节点的类别熵(以类别取值计算)
2.计算当前阶段的属性熵(按照属性取值吓得类别取值计算)
3.计算信息增益
4.计算各个属性的分裂信息度量
5.计算各个属性的信息增益率
end while
当前阶段设置为叶子节点
3.3 为什么使用C4.5要好
1.用信息增益率来选择属性
克服了用信息增益来选择属性时偏向选择值多的属性的不足。
2.采用了一种后剪枝方法
避免树的高度无节制的增长,避免过度拟合数据
3.对于缺失值的处理
在某些情况下,可供使用的数据可能缺少某些属性的值。假如〈x,c(x)〉是样本集S中的一个训练实例,但是其属性A的值A(x)未知。
处理缺少属性值的一种策略是赋给它结点n所对应的训练实例中该属性的最常见值;
另外一种更复杂的策略是为A的每个可能值赋予一个概率。
例如,给定一个布尔属性A,如果结点n包含6个已知A=1和4个A=0的实例,那么A(x)=1的概率是0.6,而A(x)=0的概率是0.4。于是,实例x的60\\%60%被分配到A=1的分支,40\\%40%被分配到另一个分支。
C4.5就是使用这种方法处理缺少的属性值。
4 决策树的划分依据三 ----基尼值和基尼指数
4.1 概念
CART 决策树 [Breiman et al., 1984] 使用"基尼指数" (Gini index)来选择划分属性.
CART 是Classification and Regression Tree的简称,这是一种著名的决策树学习算法,分类和回归任务都可用
基尼值Gini(D):从数据集D中随机抽取两个样本,其类别标记不一致的概率。故,Gini(D)值越小,数据集D的纯度越高。
数据集 D 的纯度可用基尼值来度量:
基尼指数Gini_index(D):一般,选择使划分后基尼系数最小的属性作为最优化分属性。
4.2 案例
请根据下图列表,按照基尼指数的划分依据,做出决策树。
序号 | 是否有房 | 婚姻状况 | 年收入 | 是否拖欠贷款 |
---|---|---|---|---|
1 | yes | single | 125k | no |
2 | no | married | 100k | no |
3 | no | single | 70k | no |
4 | yes | married | 120k | no |
5 | no | divorced | 95k | yes |
6 | no | married | 60k | no |
7 | yes | divorced | 220k | no |
8 | no | single | 85k | yes |
9 | no | married | 75k | no |
10 | No | Single | 90k | Yes |
1,对数据集非序列标号属性是否有房,婚姻状况,年收入分别计算它们的Gini指数,取Gini指数最小的属性作为决策树的根节点属性。
第一次大循环
2,根节点的Gini值为:
3,当根据是否有房来进行划分时,Gini指数计算过程为:
4,若按婚姻状况属性来划分,属性婚姻状况有三个可能的取值married,single,divorced,分别计算划分后的Gini系数增益。
married | single,divorced
single | married,divorced
divorced | single,married
对比计算结果,根据婚姻状况属性来划分根节点时取Gini指数最小的分组作为划分结果,即:
married | single,divorced
5,同理可得年收入Gini:
对于年收入属性为数值型属性,首先需要对数据按升序排序,然后从小到大依次用相邻值的中间值作为分隔将样本划分为两组。例如当面对年收入为60和70这两个值时,我们算得其中间值为65。以中间值65作为分割点求出Gini指数。
根据计算知道,三个属性划分根节点的指数最小的有两个:年收入属性和婚姻状况,他们的指数都为0.3。此时,选取首先出现的属性【married】作为第一次划分。
第二次大循环
6,接下来,采用同样的方法,分别计算剩下属性,其中根节点的Gini系数为(此时是否拖欠贷款的各有3个records)
7,对于是否有房属性,可得:
8,对于年收入属性则有:
经过如上流程,构建的决策树,如下图:
现在我们来总结一下CART的算法流程
while(当前节点"不纯"):
1.遍历每个变量的每一种分割方式,找到最好的分割点
2.分割成两个节点N1和N2
end while
每个节点足够“纯”为止
5 小结
5.1 常见决策树的启发函数比较
名称 | 提出时间 | 分支方式 | 备注 |
---|---|---|---|
ID3 | 1975 | 信息增益 | ID3只能对离散属性的数据集构成决策树 |
C4.5 | 1993 | 信息增益率 | 优化后解决了ID3分支过程中总喜欢偏向选择值较多的 属性 |
CART | 1984 | Gini系数 | 可以进行分类和回归,可以处理离散属性,也可以处理连续属性 |
5.1.1 ID3 算法
存在的缺点
(1) ID3算法在选择根节点和各内部节点中的分支属性时,采用信息增益作为评价标准。信息增益的缺点是倾向于选择取值较多的属性,在有些情况下这类属性可能不会提供太多有价值的信息.
(2) ID3算法只能对描述属性为离散型属性的数据集构造决策树。
5.1.2 C4.5算法
做出的改进(为什么使用C4.5要好)
(1) 用信息增益率来选择属性
(2) 可以处理连续数值型属性
(3)采用了一种后剪枝方法
(4)对于缺失值的处理
C4.5算法的优缺点
优点:
产生的分类规则易于理解,准确率较高。
缺点:
在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。
此外,C4.5只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时程序无法运行。
5.1.3 CART算法
CART算法相比C4.5算法的分类方法,采用了简化的二叉树模型,同时特征选择采用了近似的基尼系数来简化计算。
C4.5不一定是二叉树,但CART一定是二叉树。
5.1.4 多变量决策树(multi-variate decision tree)
同时,无论是ID3, C4.5还是CART,在做特征选择的时候都是选择最优的一个特征来做分类决策,但是大多数,分类决策不应该是由某一个特征决定的,而是应该由一组特征决定的。这样决策得到的决策树更加准确。这个决策树叫做多变量决策树(multi-variate decision tree)。在选择最优特征的时候,多变量决策树不是选择某一个最优特征,而是选择最优的一个特征线性组合来做决策。这个算法的代表是OC1,这里不多介绍。
如果样本发生一点点的改动,就会导致树结构的剧烈改变。这个可以通过集成学习里面的随机森林之类的方法解决。
5.2 决策树变量的两种类型:
- 数字型(Numeric):变量类型是整数或浮点数,如前面例子中的“年收入”。用“>=”,“>”,“<”或“<=”作为分割条件(排序后,利用已有的分割情况,可以优化分割算法的时间复杂度)。
- 名称型(Nominal):类似编程语言中的枚举类型,变量只能从有限的选项中选取,比如前面例子中的“婚姻情况”,只能是“单身”,“已婚”或“离婚”,使用“=”来分割。
5.3 如何评估分割点的好坏?
如果一个分割点可以将当前的所有节点分为两类,使得每一类都很“纯”,也就是同一类的记录较多,那么就是一个好分割点。
比如上面的例子,“拥有房产”,可以将记录分成了两类,“是”的节点全部都可以偿还债务,非常“纯”;“否”的节点,可以偿还贷款和无法偿还贷款的人都有,不是很“纯”,但是两个节点加起来的纯度之和与原始节点的纯度之差最大,所以按照这种方法分割。
构建决策树采用贪心算法,只考虑当前纯度差最大的情况作为分割点。
以上是关于决策树算法原理的主要内容,如果未能解决你的问题,请参考以下文章