Pivot_table MultiIndex 到列
Posted
技术标签:
【中文标题】Pivot_table MultiIndex 到列【英文标题】:Pivot_table MultiIndex to columns 【发布时间】:2015-12-15 17:58:52 【问题描述】:我有下表:
In [303]: table.head()
Out[303]:
people weekday weekofyear
2012-01-01 119 6 52
2012-01-02 76 0 1
2012-01-03 95 1 1
2012-01-04 102 2 1
2012-01-05 87 3 1
我想创建一个简单的pd.DataFrame
where :
np.sum
我尝试使用pd.pivot_table
,它给了我预期的结果:
In [308]: p = pd.pivot_table(table, index=["weekday"], columns=["weekofyear"], values=["people"], aggfunc=[np.sum])
...: p
...:
Out[308]:
sum ... \
people ...
weekofyear 1 2 3 4 5 6 7 8 9 10 ... 43 44
weekday ...
0 162 86 84 95 92 98 108 102 97 87 ... 108 86
1 95 113 88 78 108 112 98 104 87 105 ... 85 82
2 102 70 93 82 103 80 103 85 82 96 ... 87 105
3 87 91 101 83 91 100 100 80 89 86 ... 87 91
4 111 91 110 103 93 116 110 99 78 77 ... 83 102
5 117 107 99 88 97 90 100 91 97 88 ... 103 110
6 92 95 90 86 91 103 98 100 89 96 ... 94 101
weekofyear 45 46 47 48 49 50 51 52
weekday
0 99 92 99 83 107 106 93 107
1 105 83 101 93 102 89 113 84
2 96 84 110 83 104 84 84 116
3 87 96 87 88 88 83 113 93
4 93 81 104 108 72 101 109 97
5 81 107 97 89 86 108 113 101
6 93 92 93 91 89 96 93 226
[7 rows x 52 columns]
但是我没有获得我的 weekofyears 列,而是陷入了无法摆脱的 MultiIndex。如下图:
In [309]: p.columns
Out[309]:
MultiIndex(levels=[['sum'], ['people'], [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52]],
labels=[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]],
names=[None, None, 'weekofyear']
虽然索引看起来不错:
In [311]: p.index
Out[311]: Int64Index([0, 1, 2, 3, 4, 5, 6], dtype='int64', name='weekday'
我尝试使用 unstack()
和 reset_index()
函数,但没有成功。
我错过了什么吗?
【问题讨论】:
【参考方案1】:不要给values
和aggfunc
提供列表,而应该尝试给它们单独的值。示例 -
p = pd.pivot_table(table, index=["weekday"], columns=["weekofyear"], values="people", aggfunc=np.sum)
演示 -
In [3]: table
Out[3]:
people weekday weekofyear
2012-01-01 119 6 52
2012-01-02 76 0 1
2012-01-03 95 1 1
2012-01-04 102 2 1
2012-01-05 87 3 1
In [12]: p = pd.pivot_table(table, index=["weekday"], columns=["weekofyear"], values="people", aggfunc=np.sum)
In [13]: p
Out[13]:
weekofyear 1 52
weekday
0 76 NaN
1 95 NaN
2 102 NaN
3 87 NaN
6 NaN 119
In [14]: p.columns
Out[14]: Int64Index([1, 52], dtype='int64', name='weekofyear')
来自documentation -
aggfunc : 函数、默认 numpy.mean 或函数列表 如果传递函数列表,则生成的数据透视表将具有分层列,其顶层是函数名称(从函数对象本身推断)
values
的情况与此类似,但文档中并未具体提及
【讨论】:
以上是关于Pivot_table MultiIndex 到列的主要内容,如果未能解决你的问题,请参考以下文章
将 Pandas Styler 应用于 MultiIndex 列表