stack,unstack,groupby,pivot_table的区别
Posted liyun1
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了stack,unstack,groupby,pivot_table的区别相关的知识,希望对你有一定的参考价值。
stack,unstack,groupby,pivot_table的区别
stack() 堆积,是花括号的形式,只有列上的索引,unstack() 不要堆积,是表格的形式,行列均有索引 groupby() pivot_table 使用透视表实现groupby的功能
In [100]:
data=pd.DataFrame(np.arange(6).reshape((2,3)),index=pd.Index([‘A‘,‘B‘]),columns=pd.Index([‘one‘,‘two‘,‘three‘]))count()函数 列表推导式
#统计列表每个元素中指定单词出现的个数
words=[‘apple‘,‘pare‘,‘banana‘,‘and‘,‘peach‘,‘Anda‘]
for word in words:
print(word.lower().count(‘a‘)) #lower()识别大小写
1
1
3
1
1
2
[word for word in words if word.lower().count(‘a‘)>=2]
[‘banana‘, ‘Anda‘]
strings=[‘a‘,‘bv‘,‘tit‘,‘apple‘,‘ctr‘]
[x.title() for x in strings if len(x)>2]
[‘Tit‘, ‘Apple‘, ‘Ctr‘]
list(map(len,strings))
[1, 2, 3, 5, 3]
transpose() 转置
import numpy as np
three=np.arange(18).reshape(2,3,3)
three
array([[[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8]],
?
[[ 9, 10, 11],
[12, 13, 14],
[15, 16, 17]]])
three.transpose(2,1,0)
array([[[ 0, 9],
[ 3, 12],
[ 6, 15]],
?
[[ 1, 10],
[ 4, 13],
[ 7, 16]],
?
[[ 2, 11],
[ 5, 14],
[ 8, 17]]])
?
In [101]:
data
Out[101]:
In [106]:
dd=data.stack()
dd
Out[106]:
In [107]:
dd.unstack()
Out[107]:
In [112]:
dd.unstack(level=0) #取最外层索引
Out[112]:
In [113]:
dd.unstack(level=-1) #取内层索引
Out[113]:
In [212]:
df = pd.DataFrame(‘key1‘:[‘a‘,‘a‘,‘b‘,‘b‘,‘a‘],‘key2‘:[‘one‘,‘two‘,‘one‘,‘two‘,‘one‘],‘data1‘:np.random.randn(5),‘data2‘:np.random.randn(5))
In [115]:
df
Out[115]:
In [120]:
grouped1=df.groupby(‘key1‘)
In [121]:
grouped2=df.groupby([‘key1‘,‘key2‘])
In [122]:
[x for x in grouped1]
Out[122]:
In [123]:
[x for x in grouped2]
Out[123]:
In [124]:
#pandas.pivot_table(data,values=None,index=None,columns=None,aggfunc=‘mean‘,fill_value=None,margins=False,\
#dropna=True,margins_name=‘All‘)[source]
#pivot_table 的默认函数是mean,即求平均值。
In [126]:
pd.pivot_table(df,index=‘key2‘,columns=‘key1‘)
Out[126]:
In [127]:
pd.pivot_table(df,index=[‘key1‘,‘key2‘])
Out[127]:
In [130]:
df.pivot_table(‘data1‘,columns=‘key2‘)
Out[130]:
以上是关于stack,unstack,groupby,pivot_table的区别的主要内容,如果未能解决你的问题,请参考以下文章