pandas 透视表 pivot_table
Posted 罗兵の水库
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了pandas 透视表 pivot_table相关的知识,希望对你有一定的参考价值。
The function pandas.pivot_table can be used to create spreadsheet-style pivot tables.
It takes a number of arguments
data: A DataFrame object
values: a column or a list of columns to aggregate
index: a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values.
columns: a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values.
aggfunc: function to use for aggregation, defaulting to numpy.mean
import numpy as np import pandas as pd import datetime df = pd.DataFrame({‘A‘: [‘one‘, ‘one‘, ‘two‘, ‘three‘] * 6, ‘B‘: [‘A‘, ‘B‘, ‘C‘] * 8, ‘C‘: [‘foo‘, ‘foo‘, ‘foo‘, ‘bar‘, ‘bar‘, ‘bar‘] * 4, ‘D‘: np.random.randn(24), ‘E‘: np.random.randn(24), ‘F‘: [datetime.datetime(2013, i, 1) for i in range(1, 13)] + [datetime.datetime(2013, i, 15) for i in range(1, 13)]}) pd.pivot_table(df, index=[‘A‘, ‘B‘], columns=[‘C‘], values=‘D‘, aggfunc=np.sum) pd.pivot_table(df, index=[‘C‘], columns=[‘A‘, ‘B‘], values=‘D‘, aggfunc=‘sum‘) pd.pivot_table(df, index=[‘A‘, ‘B‘], columns=[‘C‘], values=[‘D‘,‘E‘], aggfunc=np.sum) pd.pivot_table(df, index=[‘A‘, ‘B‘], columns=[‘C‘], values=[‘D‘,‘E‘], aggfunc=[np.sum]) pd.pivot_table(df, index=[‘A‘, ‘B‘], columns=[‘C‘], values=[‘D‘,‘E‘], aggfunc={‘D‘:len,‘E‘:np.sum}) pd.pivot_table(df, index=[‘A‘, ‘B‘], columns=[‘C‘], values=[‘D‘,‘E‘], aggfunc={‘D‘:len,‘E‘:[np.sum, np.mean]}) pd.pivot_table(df, index=pd.Grouper(freq=‘M‘, key=‘F‘), columns=‘C‘, values=‘D‘, aggfunc=np.sum) # 有点类似 resample
以上是关于pandas 透视表 pivot_table的主要内容,如果未能解决你的问题,请参考以下文章