pandas 透视表 pivot_table

Posted 罗兵の水库

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了pandas 透视表 pivot_table相关的知识,希望对你有一定的参考价值。



The function pandas.pivot_table can be used to create spreadsheet-style pivot tables.

It takes a number of arguments

    data: A DataFrame object
    values: a column or a list of columns to aggregate
    index: a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values.
    columns: a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values.
    aggfunc: function to use for aggregation, defaulting to numpy.mean

    

import numpy as np
import pandas as pd
import datetime

df = pd.DataFrame({A: [one, one, two, three] * 6,
                   B: [A, B, C] * 8,
                   C: [foo, foo, foo, bar, bar, bar] * 4,
                   D: np.random.randn(24),
                   E: np.random.randn(24),
                   F: [datetime.datetime(2013, i, 1) for i in range(1, 13)] +
                        [datetime.datetime(2013, i, 15) for i in range(1, 13)]})
                        

pd.pivot_table(df, index=[A, B], columns=[C], values=D, aggfunc=np.sum)

pd.pivot_table(df, index=[C], columns=[A, B], values=D, aggfunc=sum)

pd.pivot_table(df, index=[A, B], columns=[C], values=[D,E], aggfunc=np.sum)

pd.pivot_table(df, index=[A, B], columns=[C], values=[D,E], aggfunc=[np.sum])

pd.pivot_table(df, index=[A, B], columns=[C], values=[D,E], aggfunc={D:len,E:np.sum})

pd.pivot_table(df, index=[A, B], columns=[C], values=[D,E], aggfunc={D:len,E:[np.sum, np.mean]})

pd.pivot_table(df, index=pd.Grouper(freq=M, key=F), columns=C, values=D, aggfunc=np.sum) # 有点类似 resample

 



 

以上是关于pandas 透视表 pivot_table的主要内容,如果未能解决你的问题,请参考以下文章

具有多索引的 Pandas 子数据透视表和总数据透视表

Pandas 数据透视表嵌套排序

在 Pandas 中处理大型数据透视表

Pandas 数据透视表行小计

Pandas 数据透视表百分比计算

Pandas 数据透视表值计数