[JLOI2015]装备购买
Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 1820 Solved: 547
[Submit][Status][Discuss]
Description
脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示
(1 <= i <= n; 1 <= j <= m),每个装备需要花费 ci,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着
怎样才能花尽量少的钱买尽量多的装备。对于脸哥来说,如果一件装备的属性能用购买的其他装备组合出(也就是
说脸哥可以利用手上的这些装备组合出这件装备的效果),那么这件装备就没有买的必要了。严格的定义是,如果
脸哥买了 zi1,.....zip这 p 件装备,那么对于任意待决定的 zh,不存在 b1,....,bp 使得 b1zi1 + ... + bpzi
p = zh(b 是实数),那么脸哥就会买 zh,否则 zh 对脸哥就是无用的了,自然不必购买。举个例子,z1 =(1; 2;
3);z2 =(3; 4; 5);zh =(2; 3; 4),b1 =1/2,b2 =1/2,就有 b1z1 + b2z2 = zh,那么如果脸哥买了 z1 和 z2
就不会再买 zh 了。脸哥想要在买下最多数量的装备的情况下花最少的钱,你能帮他算一下吗?
Input
第一行两个数 n;m。接下来 n 行,每行 m 个数,其中第 i 行描述装备 i 的各项属性值。接下来一行 n 个数,
其中 ci 表示购买第 i 件装备的花费。
Output
一行两个数,第一个数表示能够购买的最多装备数量,第二个数表示在购买最多数量的装备的情况下的最小花费
Sample Input
3 3
1 2 3
3 4 5
2 3 4
1 1 2
1 2 3
3 4 5
2 3 4
1 1 2
Sample Output
2 2
HINT
如题目中描述,选择装备 1 装备 2,装备 1 装备 3,装备 2 装备 3 均可,但选择装备 1 和装备 2 的花费最小,为 2。对于 100% 的数据, 1 <= n;m <= 500; 0 <= aj <= 1000。
新加数据三组--2016.5.13
以后再开一篇blog,发现对于线性基不是特别了解,线性基应该是一种概念吧,不是特别清楚
不是针对xor的吧,这里的话就是和线性基构造方式差不多,如果当前位置有,并且线性基里没有,就
加入,否则就减去相当的倍数,用拟阵证明是个极大线性无关组。
1 #include<cstring> 2 #include<cmath> 3 #include<iostream> 4 #include<algorithm> 5 #include<cstdio> 6 7 #define double long double 8 #define eps 0.00001 9 #define N 510 10 using namespace std; 11 inline int read() 12 { 13 int x=0,f=1;char ch=getchar(); 14 while(!isdigit(ch)){if(ch==‘-‘)f=-1;ch=getchar();} 15 while(isdigit(ch)){x=(x<<1)+(x<<3)+ch-‘0‘;ch=getchar();} 16 return x*f; 17 } 18 19 int n,m,ans,num; 20 int vis[N]; 21 struct Node 22 { 23 double b[N]; 24 int val; 25 }a[N]; 26 27 bool cmp(Node x,Node y){return x.val<y.val;} 28 int main() 29 { 30 n=read(),m=read(); 31 for (int i=1;i<=n;i++) 32 for (int j=1;j<=m;j++) 33 scanf("%Lf",&a[i].b[j]); 34 for (int i=1;i<=n;i++) a[i].val=read(); 35 sort(a+1,a+n+1,cmp); 36 for (int i=1;i<=n;i++) 37 for (int j=1;j<=m;j++) 38 if (fabs(a[i].b[j])>eps) 39 { 40 if (!vis[j]) 41 { 42 vis[j]=i; 43 ans+=a[i].val; 44 num++; 45 break; 46 } 47 else 48 { 49 double t=(double)a[i].b[j]/(double)a[vis[j]].b[j]; 50 for (int k=j;k<=m;k++) 51 a[i].b[k]-=t*a[vis[j]].b[k]; 52 } 53 } 54 printf("%d %d\n",num,ans); 55 }