题目背景
二分图
题目描述
给定一个二分图,结点个数分别为n,m,边数为e,求二分图最大匹配数
输入输出格式
输入格式:
第一行,n,m,e
第二至e+1行,每行两个正整数u,v,表示u,v有一条连边
输出格式:
共一行,二分图最大匹配
输入输出样例
说明
n,m \leq 1000n,m≤1000 , 1 \leq u \leq n1≤u≤n , 1 \leq v \leq m1≤v≤m
因为数据有坑,可能会遇到 v>mv>m 的情况。请把 v>mv>m 的数据自觉过滤掉。
算法:二分图匹配
code
匈牙利
1 #include<cstdio> 2 #include<algorithm> 3 #include<cstring> 4 #include<cmath> 5 #include<cstdlib> 6 7 using namespace std; 8 9 const int N = 1010; 10 int e[N][N],vis[N],resut[N]; 11 int n,m,E; 12 13 inline int read() { 14 int x = 0,f = 1;char ch = getchar(); 15 for (; ch<‘0‘||ch>‘9‘; ch = getchar()) 16 if (ch==‘-‘) f = -1; 17 for (; ch>=‘0‘&&ch<=‘9‘; ch = getchar()) 18 x = x*10+ch-‘0‘; 19 return x*f; 20 } 21 22 bool dfs(int u) { 23 for (int v=1; v<=m; ++v) { 24 if (e[u][v] && !vis[v]) { 25 vis[v] = true; 26 if (!resut[v] || dfs(resut[v])) { 27 resut[v] = u; 28 return true; 29 } 30 } 31 } 32 return false; 33 } 34 35 void xyl() { 36 int ans = 0; 37 for (int i=1; i<=n; ++i) { 38 memset(vis,false,sizeof(vis)); 39 if (dfs(i)) ans++; 40 } 41 printf("%d",ans); 42 } 43 44 int main() { 45 n = read(),m = read(),E = read(); 46 for (int i=1; i<=E; ++i) { 47 int a = read(),b = read(); 48 if (a >n || b > m) continue; 49 e[a][b] = 1; 50 } 51 xyl(); 52 return 0; 53 }
最大流
1 #include<cstdio> 2 #include<algorithm> 3 #include<cstring> 4 5 using namespace std; 6 7 const int N = 2010; 8 const int INF = 1e9; 9 struct Edge{ 10 int to,nxt,c; 11 Edge() {} 12 Edge(int x,int y,int z) {to = x,c = y,nxt = z;} 13 }e[1000100]; 14 int q[1000100],L,R,S,T,tot = 1; 15 int dis[N],cur[N],head[N]; 16 17 inline char nc() { 18 static char buf[100000],*p1 = buf,*p2 = buf; 19 return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2) ? EOF :*p1++; 20 } 21 inline int read() { 22 int x = 0,f = 1;char ch=nc(); 23 for (; ch<‘0‘||ch>‘9‘; ch=nc()) if(ch==‘-‘)f=-1; 24 for (; ch>=‘0‘&&ch<=‘9‘; ch=nc()) x=x*10+ch-‘0‘; 25 return x*f; 26 } 27 void add_edge(int u,int v,int c) { 28 e[++tot] = Edge(v,c,head[u]);head[u] = tot; 29 e[++tot] = Edge(u,0,head[v]);head[v] = tot; 30 } 31 bool bfs() { 32 for (int i=1; i<=T; ++i) cur[i] = head[i],dis[i] = -1; 33 L = 1,R = 0; 34 q[++R] = S;dis[S] = 1; 35 while (L <= R) { 36 int u = q[L++]; 37 for (int i=head[u]; i; i=e[i].nxt) { 38 int v = e[i].to; 39 if (dis[v] == -1 && e[i].c > 0) { 40 dis[v] = dis[u]+1;q[++R] = v; 41 if (v==T) return true; 42 } 43 } 44 } 45 return false; 46 } 47 int dfs(int u,int flow) { 48 if (u==T) return flow; 49 int used = 0; 50 for (int &i=cur[u]; i; i=e[i].nxt) { 51 int v = e[i].to; 52 if (dis[v] == dis[u] + 1 && e[i].c > 0) { 53 int tmp = dfs(v,min(flow-used,e[i].c)); 54 if (tmp > 0) { 55 e[i].c -= tmp;e[i^1].c += tmp; 56 used += tmp; 57 if (used == flow) break; 58 } 59 } 60 } 61 if (used != flow) dis[u] = -1; 62 return used; 63 } 64 int dinic() { 65 int ret = 0; 66 while (bfs()) ret += dfs(S,INF); 67 return ret; 68 } 69 int main() { 70 int n = read(),m = read(),E = read(); 71 S = n+m+1;T = n+m+2; 72 for (int i=1; i<=E; ++i) { 73 int u = read(),v = read(); 74 if (u > n || v > m) continue; 75 add_edge(u,v+n,1); 76 } 77 for (int i=1; i<=n; ++i) add_edge(S,i,1); 78 for (int i=1; i<=m; ++i) add_edge(i+n,T,1); 79 int ans = dinic(); 80 printf("%d",ans); 81 return 0; 82 }