题目描述
John的农场在给奶牛挤奶前有很多杂务要完成,每一项杂务都需要一定的时间来完成它。比如:他们要将奶牛集合起来,将他们赶进牛棚,为奶牛清洗乳房以及一些其它工作。尽早将所有杂务完成是必要的,因为这样才有更多时间挤出更多的牛奶。当然,有些杂务必须在另一些杂务完成的情况下才能进行。比如:只有将奶牛赶进牛棚才能开始为它清洗乳房,还有在未给奶牛清洗乳房之前不能挤奶。我们把这些工作称为完成本项工作的准备工作。至少有一项杂务不要求有准备工作,这个可以最早着手完成的工作,标记为杂务1。John有需要完成的n个杂务的清单,并且这份清单是有一定顺序的,杂务k(k>1)的准备工作只可能在杂务1..k-1中。
写一个程序从1到n读入每个杂务的工作说明。计算出所有杂务都被完成的最短时间。当然互相没有关系的杂务可以同时工作,并且,你可以假定John的农场有足够多的工人来同时完成任意多项任务。
输入输出格式
输入格式:
第1行:一个整数n,必须完成的杂务的数目(3<=n<=10,000);
第2 ~ n+1行: 共有n行,每行有一些用1个空格隔开的整数,分别表示:
* 工作序号(1..n,在输入文件中是有序的);
* 完成工作所需要的时间len(1<=len<=100);
* 一些必须完成的准备工作,总数不超过100个,由一个数字0结束。有些杂务没有需要准备的工作只描述一个单独的0,整个输入文件中不会出现多余的空格。
输出格式:
一个整数,表示完成所有杂务所需的最短时间。
输入输出样例
7 1 5 0 2 2 1 0 3 3 2 0 4 6 1 0 5 1 2 4 0 6 8 2 4 0 7 4 3 5 6 0
23
很简单的一道题,但是在看其他人题解时,发现很多人用什么拓扑排序,还有其他的关键路径,代码打得老长的……
表示orz……其实这题几行代码就行了。其实好简单的,看着数据规模就知道。
AC代码如下:
#include<cstdio> #include<algorithm> using namespace std; const int N=100000+5; int n,nd,t,now,ans,unuse,time[N]; int main() { scanf("%d",&n); for(int i=1;i<=n;i++) { t=0; scanf("%d%d%d",&unuse,&now,&nd); while(nd) t=(t>=time[nd]?t:time[nd]),scanf("%d",&nd); time[i]=t+now; ans=ans>time[i]?ans:time[i]; } printf("%d",ans); return 0; }