01背包

Posted rainbowxch

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了01背包相关的知识,希望对你有一定的参考价值。

一、问题描述:有n 个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?

二、总体思路:根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现;

三、动态规划的原理及过程:

  eg:number=4,capacity=8

i

1

2

3

4

w(体积)

2

3

4

5

v(价值)

3

4

5

6

 

1原理

  动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。

2过程

  a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第 i 个物品选或不选),Vi表示第 i 个物品的价值,Wi表示第 i 个物品的体积(重量);

  b) 建立模型,即求max(V1X1+V2X2+…+VnXn);

  c) 约束条件,W1X1+W2X2+…+WnXn<capacity;

  d) 定义V(i,j):当前背包容量 j,前 i 个物品最佳组合对应的价值;

  e) 最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。判断该问题是否满足最优性原理,采用反证法证明:

    假设(X1,X2,…,Xn)是01背包问题的最优解,则有(X2,X3,…,Xn)是其子问题的最优解,

    假设(Y2,Y3,…,Yn)是上述问题的子问题最优解,则理应有(V2Y2+V3Y3+…+VnYn)+V1X> (V2X2+V3X3+…+VnXn)+V1X1;

    而(V2X2+V3X3+…+VnXn)+V1X1=(V1X1+V2X2+…+VnXn),则有(V2Y2+V3Y3+…+VnYn)+V1X> (V1X1+V2X2+…+VnXn);

    该式子说明(X1,Y2,Y3,…,Yn)才是该01背包问题的最优解,这与最开始的假设(X1,X2,…,Xn)是01背包问题的最优解相矛盾,故01背包问题满足最优性原理;

  f) 寻找递推关系式,面对当前商品有两种可能性:

    第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);

    第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }

       其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);

    由此可以得出递推关系式:

    1) j<w(i)      V(i,j)=V(i-1,j)

    2) j>=w(i)     V(i,j)=max{ V(i-1,j)V(i-1,j-w(i))+v(i) 

  g) 填表,首先初始化边界条件,V(0,j)=V(i,0)=0;

 

  h) 然后一行一行的填表,

    1) 如,i=1,j=1,w(1)=2,v(1)=3,有j<w(1),故V(1,1)=V(1-1,1)=0;

    2) 又如i=1,j=2,w(1)=2,v(1)=3,有j=w(1),故V(1,2)=max{ V(1-1,2),V(1-1,2-w(1))+v(1) }=max{0,0+3}=3;

    3) 如此下去,填到最后一个,i=4,j=8,w(4)=5,v(4)=6,有j>w(4),故V(4,8)=max{ V(4-1,8),V(4-1,8-w(4))+v(4) }=max{9,4+6}=10;所以填完表如下图:

 

 

java:

import java.util.Scanner;

public class Bag {
	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		int n = sc.nextInt();
		int w[] = new int[n+1];//存放重量
		int v[] = new int[n+1];//存放价值
		int c = sc.nextInt();//背包最大容量
		int sum[][] = new int[n+1][c+1];
		
		for (int i = 1; i <= n; i++) {
			w[i] = sc.nextInt();
			v[i] = sc.nextInt();
		}
		
		for (int i = 1; i <= n; i++) {
			for (int j = 1; j <= c; j++) {
				if(w[i]<=j) {
					sum[i][j] = Math.max(sum[i-1][j], sum[i-1][j-w[i]]+v[i]);
				}else {
					sum[i][j] = sum[i-1][j];
				}
			}
		}
		
		System.out.println(sum[n][c]);
	}
}

  

 

另一个例子:

 

 

以上是关于01背包的主要内容,如果未能解决你的问题,请参考以下文章

01背包问题模板代码

代码随想录算法训练营第四十二天 | 01背包问题,你该了解这些01背包问题,你该了解这些 滚动数组 416. 分割等和子集

把01背包问题的底裤扒个底朝天!!!

0-1背包问题的回溯法中,剪枝用的上界函数问题

用回溯法求01背包问题,怎样使用C++模板啊,迫切求指点!

01背包模板全然背包 and 多重背包(模板)