PTA 7-1 畅通工程之局部最小花费问题(35 分)
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了PTA 7-1 畅通工程之局部最小花费问题(35 分)相关的知识,希望对你有一定的参考价值。
7-1 畅通工程之局部最小花费问题(35 分)
某地区经过对城镇交通状况的调查,得到现有城镇间快速道路的统计数据,并提出“畅通工程”的目标:使整个地区任何两个城镇间都可以实现快速交通(但不一定有直接的快速道路相连,只要互相间接通过快速路可达即可)。现得到城镇道路统计表,表中列出了任意两城镇间修建快速路的费用,以及该道路是否已经修通的状态。现请你编写程序,计算出全地区畅通需要的最低成本。
输入格式:
输入的第一行给出村庄数目N (1≤N≤100);随后的N(N?1)/2行对应村庄间道路的成本及修建状态:每行给出4个正整数,分别是两个村庄的编号(从1编号到N),此两村庄间道路的成本,以及修建状态 — 1表示已建,0表示未建。
输出格式:
输出全省畅通需要的最低成本。
输入样例:
4
1 2 1 1
1 3 4 0
1 4 1 1
2 3 3 0
2 4 2 1
3 4 5 0
输出样例:
3
普里姆算法
#include<iostream> #include<fstream> using namespace std; #define INF 0x3f3f3f3f const int maxn = 117; int m[maxn][maxn]; int vis[maxn], low[maxn]; int n; int prim() { vis[1] = 1; int sum = 0; int pos, minn; pos = 1; for(int i = 1; i <= n; i++) { low[i] = m[pos][i]; } for(int i = 1; i < n; i++) { minn = INF; for(int j = 1; j <= n; j++) { if(!vis[j] && minn > low[j]) { minn = low[j]; pos = j; } } sum += minn; vis[pos] = 1; for(int j = 1; j <= n; j++) { if(!vis[j] && low[j] > m[pos][j]) { low[j] = m[pos][j]; } } } return sum; } int main() { scanf("%d",&n); int ms = n*(n-1)/2; int x,y,cost,tes; for(int i = 1; i <= n ;i++ ) for(int j = 1; j <= n; j++) m[i][j] = INF; for(int i = 1; i <= ms ; i++) { cin>>x>>y>>cost>>tes; m[x][y] = m[y][x] = tes==1?0:cost; } cost = prim(); cout<< cost << endl; return 0; }
以上是关于PTA 7-1 畅通工程之局部最小花费问题(35 分)的主要内容,如果未能解决你的问题,请参考以下文章