模板第二类斯特林数Stirling

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了模板第二类斯特林数Stirling相关的知识,希望对你有一定的参考价值。

第二类Stirling数实际上是集合的一个拆分,表示将n个不同的元素拆分成m个集合的方案数,记为技术分享 或者技术分享 。

 

 

第二类Stirling数的推导和第一类Stirling数类似,可以从定义出发考虑第n+1个元素的情况,假设要把n+1个元素分成m个集合则分析如下:
(1)如果n个元素构成了m-1个集合,那么第n+1个元素单独构成一个集合。方案数技术分享 。
(2)如果n个元素已经构成了m个集合,将第n+1个元素插入到任意一个集合。方案数 m*S(n,m) 。
 
综合两种情况得:
技术分享
 
 
递推式:dp[i][j] = dp[i-1][j-1]+j*dp[i-1][j];
 
 
 
模板代码:
      dp[0][0] = 1;
        for(int i = 1;i <= n; i++){
            for(int j = 1;j <= i; j++){
                    dp[i][j] = dp[i-1][j-1]+j*dp[i-1][j];
            }
        } 

 

 

n=0 1
n=1 0 1
n=2 0 1 1
n=3
0 1 3 1
n=4
0 1 7 6 1
n=5
0 1 15 25 10 1
n=6
0 1 31 90 65 15 1
n=7
0 1 63 301 350 140 21 1
n=8
0 1 127 966 1701 1050 266 28 1
n=9
0 1 255 3025 7770 6951 2646 462 36 1
 

以上是关于模板第二类斯特林数Stirling的主要内容,如果未能解决你的问题,请参考以下文章

第二类Stirling数初探 By cellur925

特殊计数序列——第二类斯特林(stirling)数

新疆大学(新大)OJ xju 1006: 比赛排名 第二类斯特林数+阶乘

特殊计数序列——第一类斯特林(stirling)数

第二类斯特林(Stirling)数的简单介绍和计算(小球入盒)

「Luogu5395」模板第二类斯特林数·行