新疆大学(新大)OJ xju 1006: 比赛排名 第二类斯特林数+阶乘

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了新疆大学(新大)OJ xju 1006: 比赛排名 第二类斯特林数+阶乘相关的知识,希望对你有一定的参考价值。

题目链接:http://139.129.36.234/JudgeOnline/problem.php?id=1006

 

第二类斯特林数:

第二类Stirling数实际上是集合的一个拆分,表示将n个不同的元素拆分成m个集合的方案数,记为 技术分享 或者技术分享 。

 

 

第二类Stirling数的推导和第一类Stirling数类似,可以从定义出发考虑第n+1个元素的情况,假设要把n+1个元素分成m个集合则分析如下:
(1)如果n个元素构成了m-1个集合,那么第n+1个元素单独构成一个集合。方案数技术分享 。
(2)如果n个元素已经构成了m个集合,将第n+1个元素插入到任意一个集合。方案数 m*S(n,m) 。
  综合两种情况得:
    技术分享
 
 

递推式:dp[i][j] = dp[i-1][j-1]+j*dp[i-1][j];
 
 
 
 
思路:
这题就是求斯特林数,即将n个队伍分成i个集合(1 <= i <= n)。
然后对每个集合排序,乘上A(i,i)。也就是i !(i的阶乘)。
 
 
 
 
代码:
#include<cstdio>  
#include<cstring>
#include<iostream>
using namespace std;

const int mod = 10056;

int dp[1010][1010];
int main()  {  
  int t,n;
  cin >> t;
  int k = 1;
  while(t--){
      cin >> n;
      dp[0][0] = 1;
        for(int i = 1;i <= n; i++){
            for(int j = 1;j <= i; j++){
                    dp[i][j] = (dp[i-1][j-1]+j*dp[i-1][j])%mod;
            }
        } 
        
        int num = 1;
        int ans = 0;
        for(int j = 1;j <= n; j++){
            num = (num * j)%mod;
            ans = (ans + num*dp[n][j])%mod;
        }
        cout << "Case " << k++ << ": ";
        cout << ans << endl;
        
    }
  
  return 0;  
}   

 

 
 

以上是关于新疆大学(新大)OJ xju 1006: 比赛排名 第二类斯特林数+阶乘的主要内容,如果未能解决你的问题,请参考以下文章

九度OJ 1006 ZOJ问题 (这题測试数据有问题)

软件体系结构概论 XJU

leetcode周赛有证书吗

cqyz oj | 潜水比赛 | 贪心

小米 OJ 编程比赛 03 月常规赛

小米 OJ 编程比赛 12 月常规赛