1052 最大M子段和(DP)

Posted happy_code

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了1052 最大M子段和(DP)相关的知识,希望对你有一定的参考价值。

基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题
N个整数组成的序列a[1],a[2],a[3],…,a[n],将这N个数划分为互不相交的M个子段,并且这M个子段的和是最大的。如果M >= N个数中正数的个数,那么输出所有正数的和。
例如:-2 11 -4 13 -5 6 -2,分为2段,11 -4 13一段,6一段,和为26。
Input
第1行:2个数N和M,中间用空格分隔。N为整数的个数,M为划分为多少段。(2 <= N , M <= 5000)
第2 - N+1行:N个整数 (-10^9 <= a[i] <= 10^9)
Output
输出这个最大和
Input示例
7 2
-2
11
-4
13
-5
6
-2
Output示例
26



//题意有点难懂,应该是说,从 N 个数中,选出小于等于 M 段,不相交,并且和最大
显然dp题,但怎么设计比较难,假设划分成 x 段,对于每个元素,有这样的考虑,
1、和上一个连起来,就是上一个位置分为 x 段
2、或者新开一段,就是上一个位置分 x-1 段
那么, dp[i][j] 表示前 i 个数选出 j 段,并且最后一段有 dat[i]
dp[i][j] = max(dp[i-1][j] , dp[j-1 -- i-1][j-1])
然后发现这是 n^3 ,得优化一下
dp[j-1 -- i-1][j-1] 这个可以用一个数组存一下,
设为 pre[i][j] ,表 前 i 个数,选出 j 段的最大和
pre[i][j] = max(pre[i-1][j],dp[i][j])
然后可以发现,最多和 j-1 有关,所以可以滚动一下优化空间,就可以愉快的dp辣
技术分享
 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 #define MOD 1000000007
 4 #define INF 0x3f3f3f3f
 5 #define eps 1e-9
 6 #define LL long long
 7 #define MX 5005
 8 
 9 int n,k;
10 int dat[MX];
11 LL dp[MX][2];
12 LL pre[MX][2];
13 
14 int main()
15 {
16     while(scanf("%d%d",&n,&k)!=EOF)
17     {
18         dp[0][0]=0, pre[0][0]=0;
19         for (int i=1;i<=n;i++)
20         {
21             scanf("%d",dat+i);
22             pre[i][0]=0;
23             dp[i][0]=0;
24         }
25         LL ans =0;
26         for (int j=1;j<=k;j++)
27         {
28             for (int i=1;i<=n;i++)
29             {
30                 dp[i][j&1] = max(dp[i-1][j&1],pre[i-1][(j-1)&1])+dat[i];
31                 pre[i][j&1] = max(pre[i-1][j&1],dp[i][j&1]);
32             }
33             ans = max(ans,pre[n][j&1]);
34         }
35         printf("%lld\n",ans);
36     }
37     return 0;
38 }
View Code

 

 

 

 

 

 

以上是关于1052 最大M子段和(DP)的主要内容,如果未能解决你的问题,请参考以下文章

51nod 1052 最大M子段和

51nod1052 最大M子段和

51nod1052 最大M子段和

51nod 1052 最大M子段和(动态规划)

1052 最大M子段和

51nod1053&&1052 最大M子段和