大数(高精度)加减乘除
Posted 萌新上路
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大数(高精度)加减乘除相关的知识,希望对你有一定的参考价值。
1、加减法间是可以相互转化的
2、大数加减乘除要靠字符串实现
#include <iostream> #include <string> using namespace std; inline int compare(string str1, string str2) { if(str1.size() > str2.size()) //长度长的整数大于长度小的整数 return 1; else if(str1.size() < str2.size()) return -1; else return str1.compare(str2); //若长度相等,从头到尾按位比较,compare函数:相等返回0,大于返回1,小于返回-1 } //高精度加法 string ADD_INT(string str1, string str2) { string MINUS_INT(string str1, string str2); //定义减法函数 int sign = 1; //sign 为符号位 string str; //加减法转换阶段 /***********************************************/ if(str1[0] == ‘-‘) { if(str2[0] == ‘-‘) { sign = -1; str = ADD_INT(str1.erase(0, 1), str2.erase(0, 1)); //erase(iterator first, iterator last);//删除[first,last)之间的所有字符,返回删除后迭代器的位置 } else { str = MINUS_INT(str2, str1.erase(0, 1)); } } else { if(str2[0] == ‘-‘) str = MINUS_INT(str1, str2.erase(0, 1)); /***********************************************/ else { //把两个整数对齐,短整数前面加0补齐 /***********************************************/ string::size_type l1, l2; int i; l1 = str1.size(); l2 = str2.size(); if(l1 < l2) { for(i = 1; i <= l2 - l1; i++) str1 = "0" + str1; } else { for(i = 1; i <= l1 - l2; i++) str2 = "0" + str2; } /************************************************/ int int1 = 0, int2 = 0; //int2 记录进位 for(i = str1.size() - 1; i >= 0; i--) { int1 = (int(str1[i]) - 48 + int(str2[i]) - 48 + int2) % 10; //48 为 ‘0‘ 的ASCII 码 int2 = (int(str1[i]) - 48 + int(str2[i]) - 48 +int2) / 10; str = char(int1 + 48) + str; } if(int2 != 0) str = char(int2 + 48) + str; } } //运算后处理符号位 if((sign == -1) && (str[0] != ‘0‘)) str = "-" + str; return str; } //高精度减法 string MINUS_INT(string str1, string str2) { string MULTIPLY_INT(string str1, string str2); int sign = 1; //sign 为符号位 string str; if(str2[0] == ‘-‘) str = ADD_INT(str1, str2.erase(0, 1)); else { int res = compare(str1, str2); if(res == 0) return "0"; if(res < 0) { sign = -1; string temp = str1; str1 = str2; str2 = temp; } string::size_type tempint; tempint = str1.size() - str2.size(); for(int i = str2.size() - 1; i >= 0; i--) { if(str1[i + tempint] < str2[i]) { str1[i + tempint - 1] = char(int(str1[i + tempint - 1]) - 1); str = char(str1[i + tempint] - str2[i] + 58) + str; } else str = char(str1[i + tempint] - str2[i] + 48) + str; } for(int i = tempint - 1; i >= 0; i--) str = str1[i] + str; } //去除结果中多余的前导0 str.erase(0, str.find_first_not_of(‘0‘)); if(str.empty()) str = "0"; if((sign == -1) && (str[0] != ‘0‘)) str = "-" + str; return str; } //高精度乘法 string MULTIPLY_INT(string str1, string str2) { int sign = 1; //sign 为符号位 string str; if(str1[0] == ‘-‘) { sign *= -1; str1 = str1.erase(0, 1); } if(str2[0] == ‘-‘) { sign *= -1; str2 = str2.erase(0, 1); } int i, j; string::size_type l1, l2; l1 = str1.size(); l2 = str2.size(); for(i = l2 - 1; i >= 0; i --) { //实现手工乘法 string tempstr; int int1 = 0, int2 = 0, int3 = int(str2[i]) - 48; if(int3 != 0) { for(j = 1; j <= (int)(l2 - 1 - i); j++) tempstr = "0" + tempstr; for(j = l1 - 1; j >= 0; j--) { int1 = (int3 * (int(str1[j]) - 48) + int2) % 10; int2 = (int3 * (int(str1[j]) - 48) + int2) / 10; tempstr = char(int1 + 48) + tempstr; } if(int2 != 0) tempstr = char(int2 + 48) + tempstr; } str = ADD_INT(str, tempstr); } //去除结果中的前导0 str.erase(0, str.find_first_not_of(‘0‘)); if(str.empty()) str = "0"; if((sign == -1) && (str[0] != ‘0‘)) str = "-" + str; return str; } //高精度除法 string DIVIDE_INT(string str1, string str2, int flag) { //flag = 1时,返回商; flag = 0时,返回余数 string quotient, residue; //定义商和余数 int sign1 = 1, sign2 = 1; if(str2 == "0") { //判断除数是否为0 quotient = "ERROR!"; residue = "ERROR!"; if(flag == 1) return quotient; else return residue; } if(str1 == "0") { //判断被除数是否为0 quotient = "0"; residue = "0"; } if(str1[0] == ‘-‘) { str1 = str1.erase(0, 1); sign1 *= -1; sign2 = -1; } if(str2[0] == ‘-‘) { str2 = str2.erase(0, 1); sign1 *= -1; } int res = compare(str1, str2); if(res < 0) { quotient = "0"; residue = str1; }else if(res == 0) { quotient = "1"; residue = "0"; }else { string::size_type l1, l2; l1 = str1.size(); l2 = str2.size(); string tempstr; tempstr.append(str1, 0, l2 - 1); //模拟手工除法 for(int i = l2 - 1; i < l1; i++) { tempstr = tempstr + str1[i]; for(char ch = ‘9‘; ch >= ‘0‘; ch --) { //试商 string str; str = str + ch; if(compare(MULTIPLY_INT(str2, str), tempstr) <= 0) { quotient = quotient + ch; tempstr = MINUS_INT(tempstr, MULTIPLY_INT(str2, str)); break; } } } residue = tempstr; } //去除结果中的前导0 quotient.erase(0, quotient.find_first_not_of(‘0‘)); if(quotient.empty()) quotient = "0"; if((sign1 == -1) && (quotient[0] != ‘0‘)) quotient = "-" + quotient; if((sign2 == -1) && (residue[0] != ‘0‘)) residue = "-" + residue; if(flag == 1) return quotient; else return residue; } //高精度除法,返回商 string DIV_INT(string str1, string str2) { return DIVIDE_INT(str1, str2, 1); } //高精度除法,返回余数 string MOD_INT(string str1, string str2) { return DIVIDE_INT(str1, str2, 0); } int main() { char ch; string s1, s2, res; while(cin >> ch) { cin >> s1 >> s2; switch(ch) { case ‘+‘: res = ADD_INT(s1, s2); break; //高精度加法 case ‘-‘: res = MINUS_INT(s1, s2); break; //高精度减法 case ‘*‘: res = MULTIPLY_INT(s1, s2); break; //高精度乘法 case ‘/‘: res = DIV_INT(s1, s2); break; //高精度除法, 返回商 case ‘m‘: res = MOD_INT(s1, s2); break; //高精度除法, 返回余数 default : break; } cout << res << endl; } return(0); }
以上是关于大数(高精度)加减乘除的主要内容,如果未能解决你的问题,请参考以下文章