ARCH模型

Posted 赏月斋

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ARCH模型相关的知识,希望对你有一定的参考价值。

ARCH模型的基本思想

  ARCH模型的基本思想是指在以前信息集下,某一时刻一个噪声的发生是服从正态分布。该正态分布的均值为零,方差是一个随时间变化的量(即为条件异方差)。并且这个随时间变化的方差是过去有限项噪声值平方的线性组合(即为自回归)。这样就构成了自回归条件异方差模型。

  由于需要使用到条件方差,我们这里不采用恩格尔的比较严谨的复杂的数学表达式,而是采取下面的表达方式,以便于我们把握模型的精髓。见如下数学表达:

  Yt = βXt+εt (1)其中,

  • Yt为被解释变量,
  • Xt为解释变量,
  • εt为误差项。

  如果误差项的平方服从AR(q)过程,即εt2 =a0+a1εt-12 +a2εt-22 + …… + aqεt-q2 +ηt t =1,2,3…… (2)其中,

  ηt独立同分布,并满足E(ηt)= 0, D(ηt)= λ2 ,则称上述模型是自回归条件异方差模型。简记为ARCH模型。称序列εt 服从q阶的ARCH的过程,记作εt -ARCH(q)。为了保证εt2 为正值,要求a0 >0 ,ai ≥0 i=2,3,4… 。

  上面(1)和(2)式构成的模型被称为回归-ARCH模型。ARCH模型通常对主体模型的随机扰动项进行建模分析。以便充分的提取残差中的信息,使得最终的模型残差ηt成为白噪声序列。

  从上面的模型中可以看出,由于现在时刻噪声的方差是过去有限项噪声值平方的回归,也就是说噪声的波动具有一定的记忆性,因此,如果在以前时刻噪声的方差变大,那么在此刻噪声的方差往往也跟着变大;如果在以前时刻噪声的方差变小,那么在此刻噪声的方差往往也跟着变小。体现到期货市场,那就是如果前一阶段期货合约价格波动变大,那么在此刻市场价格波动也往往较大,反之亦然。这就是ARCH模型所具有描述波动的集群性的特性,由此也决定它的无条件分布是一个尖峰胖尾的分布。

 

ARCH模型在分析中的应用

  ARCH模型的应用分析。从1982年开始就一直没有间断,经济学家和计量经济学家们,力图通过不断挖掘这个模型的潜力,来不断增强我们解释和预测市场的能力。从国外的研究情况来看,大致有两个研究方向:

  一是研究ARCH模型的拓展,完善ARCH模型。自ARCH模型始创以来,经历了两次突破。一次是Bollerslev T. 提出广义ARCH (Generalized ARCH) , 即GARCH模型,从此以后,几乎所有的ARCH 模型新成果都是在GARCH模型基础上得到的。第二次则是由于长记忆在经济学上的研究取得突破,分整研究被证明更有效地刻画了某些长记忆性经济现象,与ARCH模型相结合所诞生的一系列长记忆ARCH模型的研究从1996年至今方兴未艾。

  第二个应用是将ARCH模型作为一种度量金融时间序列数据波动性的有效工具,并应用于与波动性有关广泛研究领域。包括政策研究、理论命题检验、季节性分析等方面。

  ARCH模型能准确地模拟时间序列变量的波动性的变化,它在金融工程学的实证研究中应用广泛,使人们能更加准确地把握风险(波动性),尤其是应用在风险价值(Value at Risk)理论中,在华尔街是尽人皆知的工具。

  可以预见,未来的研究将会在方法论和工具论两个方向进一步展开,特别是其应用研究还在不断拓展,特别是伴随着市场微观结构理论的成熟,采用ARCH模型来模拟波动性,将会对期货交易制度设计,风险控制制度设计和投资组合风险管理策略研究,提供一个更为广阔的研究空间。

以上是关于ARCH模型的主要内容,如果未能解决你的问题,请参考以下文章

使用网格搜索获得最佳模型的“并行”管道

WinBUGS对多元随机波动率模型:贝叶斯估计与模型比较

Prism和R语言作图区别

高分求英语翻译,中译英

时间序列分析

游戏开发建模教你使用Unity ProBuilder制作基础模型,搭建场景原型( 保姆级教程 | Unity 2021最新版)