poj3219--二项式系数--组合数的奇偶性

Posted BK-Edwina

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了poj3219--二项式系数--组合数的奇偶性相关的知识,希望对你有一定的参考价值。

Description

二项式系数C(nk)因它在组合数学中的重要性而被广泛地研究。二项式系数可以如下递归的定义:

C(1, 0) = C(1, 1) = 1;
C(n, 0) = 1对于所有n > 0;
C(nk) = C(n ? 1, k ? 1) + C(n ? 1, k)对于所有0 < k ≤ n

给出nk,你要确定C(nk)的奇偶性。

Input

输入包含多组测试数据。每组测试数据一对整数nk(0 ≤ k ≤ n < 231),占据独立一行。

文件结束符(EOF)表示输入结束。

Output

对每组测试数据,输出一行,包含一个“0” 或一个“1”,即C(nk)除以2的余数。

Sample Input

1 1
1 0
2 1

Sample Output

1
1
0

题解:

  对于C(n,k),若n&k == k 则c(n,k)为奇数,否则为偶数。

  证明转载自:http://wenda.tianya.cn/question/6a073ef33b8fdffa

技术分享
 1 #include<iostream>
 2 using namespace std;
 3 int main()
 4 {
 5     int n,k;
 6     while(cin>>n>>k)
 7     {
 8         if((n&k)==k)
 9             cout<<1<<endl;
10         else 
11             cout<<0<<endl;
12     }
13     return 0;
14 }
View Code

 

  证明:
  利用数学归纳法:
  由C(n,k) = C(n,k-1) + C(n-1,k-1);
  对应于杨辉三角:
  1
  1 2 1
  1 3 3 1
  1 4 6 4 1
  ………………
  可以验证前面几层及k = 0时满足结论,下面证明在C(n-1,k)和C(n-1,k-1) (k &gt; 0) 满足结论的情况下,
  C(n,k)满足结论。
  1).假设C(n-1,k)和C(n-1,k-1)为奇数:
  则有:(n-1)&k == k;
  (n-1)&(k-1) == k-1;
  由于k和k-1的最后一位(在这里的位指的是二进制的位,下同)必然是不同的,所以n-1的最后一位必然是1
  。
  现假设n&k == k。
  则同样因为n-1和n的最后一位不同推出k的最后一位是1。
  因为n-1的最后一位是1,则n的最后一位是0,所以n&k != k,与假设矛盾。
  所以得n&k != k
  2).假设C(n-1,k)和C(n-1,k-1)为偶数:
  则有:(n-1)&k != k;
  (n-1)&(k-1) != k-1;
  现假设n&k == k.
  则对于k最后一位为1的情况:
  此时n最后一位也为1,所以有(n-1)&(k-1) == k-1,与假设矛盾。
  而对于k最后一位为0的情况:
  则k的末尾必有一部分形如:10; 代表任意个0。
  相应的,n对应的部分为: 1{*}*; *代表0或1。
  而若n对应的{*}*中只要有一个为1,则(n-1)&k == k成立,所以n对应部分也应该是10。
  则相应的,k-1和n-1的末尾部分均为01,所以(n-1)&(k-1) == k-1 成立,与假设矛盾。
  所以得n&k != k。
  由1)和2)得出当C(n,k)是偶数时,n&k != k。
  3).假设C(n-1,k)为奇数而C(n-1,k-1)为偶数:
  则有:(n-1)&k == k;
  (n-1)&(k-1) != k-1;
  显然,k的最后一位只能是0,否则由(n-1)&k == k即可推出(n-1)&(k-1) == k-1。
  所以k的末尾必有一部分形如:10;
  相应的,n-1的对应部分为: 1{*}*;
  相应的,k-1的对应部分为: 01;
  则若要使得(n-1)&(k-1) != k-1 则要求n-1对应的{*}*中至少有一个是0.
  所以n的对应部分也就为 : 1{*}*; (不会因为进位变1为0)
  所以 n&k = k。
  4).假设C(n-1,k)为偶数而C(n-1,k-1)为奇数:
  则有:(n-1)&k != k;
  (n-1)&(k-1) == k-1;
  分两种情况:
  当k-1的最后一位为0时:
  则k-1的末尾必有一部分形如: 10;
  相应的,k的对应部分为 : 11;
  相应的,n-1的对应部分为 : 1{*}0; (若为1{*}1,则(n-1)&k == k)
  相应的,n的对应部分为 : 1{*}1;
  所以n&k = k。
  当k-1的最后一位为1时:
  则k-1的末尾必有一部分形如: 01; (前面的0可以是附加上去的)
  相应的,k的对应部分为 : 10;
  相应的,n-1的对应部分为 : 01; (若为11,则(n-1)&k == k)
  相应的,n的对应部分为 : 10;
  所以n&k = k。
  由3),4)得出当C(n,k)为奇数时,n&k = k。
  综上,结论得证!































































以上是关于poj3219--二项式系数--组合数的奇偶性的主要内容,如果未能解决你的问题,请参考以下文章

二项式系数和公式

POJ 3484 Showstopper(二分答案)

每日一小练——二项式系数加法解

二项式定理组合数学二进制Divan and bitwise operations

《Concrete Mathematics》-chaper5-二项式系数

组合数学——cf1332E