朴素贝叶斯知识点概括

Posted 肖云

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了朴素贝叶斯知识点概括相关的知识,希望对你有一定的参考价值。

1. 简述

  贝叶斯是典型的生成学习方法

  对于给定的训练数据集,首先,基于特征条件独立假设,学习输入/输出的联合概率分布;然后,基于此模型,对于给定的输入x,根据贝叶斯定理后验概率最大的输出y

  术语说明:

  • 特征条件独立假设:用于分类的特征在类确定的条件下都是条件独立的。这一假设大大减少模型包含的条件概率数量,简化了贝叶斯方法的学习与预测
  • 联合概率分布:即先验概率和条件概率(条件独立性假设,重要知识点
  • 学习联合概率分布的方法:学习就是指估计先验概率和条件概率,具体方法有极大似然估计、贝叶斯估计(贝叶斯估计是为了避免极大似然估计出现概率为0的情况,影响计算)
  • 后验概率最大:等价于期望风险最小化

2 条件概率的估计

  摘自http://www.cnblogs.com/leoo2sk/archive/2010/09/17/naive-bayesian-classifier.html

  计算出各个划分的条件概率是朴素贝叶斯分类的关键,当特征是离散值时,统计出现频率即可,下面讨论连续值的情况

  当特征属性为连续值时,通常假定其值服从高斯分布(也称正态分布)。即:

      

      而

      因此只要计算出训练样本中各个类别中此特征项划分的各均值和标准差,代入上述公式即可得到需要的估计值

  代码:https://github.com/yundou2017/bayes/blob/master/Bayes2.m

优缺点

  • 优点:在数据较少的情况下仍然有效,可以处理多类别问题
  • 缺点:对于输入数据的准备方式较为敏感

以上是关于朴素贝叶斯知识点概括的主要内容,如果未能解决你的问题,请参考以下文章

三类的朴素贝叶斯?

007:朴素贝叶斯

机器学习面试题——朴素贝叶斯

从朴素贝叶斯分类到贝叶斯网络

机器学习知识点查漏补缺(朴素贝叶斯分类)

朴素贝叶斯:朴素贝叶斯定义朴素贝叶斯公式分解朴素贝叶斯分类流程高斯型朴素贝叶斯多项式朴素贝叶斯伯努利型朴素贝叶斯朴素贝叶斯预测概率校准朴素贝叶斯优缺点