一元多项式的表示及加减乘除运算
Posted zhchoutai
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了一元多项式的表示及加减乘除运算相关的知识,希望对你有一定的参考价值。
比如:怎样实现用线性链表表示多项式的加法运算?
依据一元多项式相加的运算规则:对于两个一元多项式中全部指数同样的项。相应系数相加,若其和不为零,则构成“和多项式”中的一项。对于两个一元多项式中全部指数不同样的项,则分别复抄到“和多项式”中去。
#include <stdio.h> #include <stdlib.h> #include <malloc.h> typedef struct polyn { float coef; int expn; struct polyn* next; }PolyNode,*PLinkList; PLinkList CreatePolyn();//创建一元多项式,使一元多项式呈指数递减 void OutPut(PLinkList head);//输出一元多项式 PLinkList Addition(PLinkList L1,PLinkList L2);//多项式的加法 PLinkList Subtraction(PLinkList L1,PLinkList L2);//多项式的减法 PLinkList Reverse(PLinkList head);//将生成的链表逆置。使一元多项式呈指数递增形式 PLinkList MultiplyPolyn(PLinkList L1,PLinkList L2);//多项式的乘法 #include "test.h" PLinkList CreatePolyn()//创建一元多项式。使一元多项式呈指数递减 { PolyNode *p,*q,*s; PolyNode *head = NULL; int expn2; float coef2; head = (PLinkList)malloc(sizeof(PolyNode));//动态生成头结点 if(!head) { return NULL; } head->coef = 0.0;//初始化 head->expn = 0; head->next = NULL; do { printf("输入系数coef(系数和指数都为0结束)"); scanf("%f",&coef2); printf("输入指数数exp(系数和指数都为0结束)"); scanf("%d",&expn2); if((long)coef2 == 0 && expn2 == 0) { break; } s = (PLinkList)malloc(sizeof(PolyNode)); if(!s) { return NULL; } s->expn = expn2; s->coef = coef2; q = head->next ; p = head; while(q && expn2 < q->expn) { p = q; q = q->next ; } if(q == NULL || expn2 > q->expn) { p->next = s; s->next = q; } else { q->coef += coef2; } }while(1); return head; } void OutPut(PLinkList head)//输出一元多项式 { PolyNode *p = head->next ; while(p) { printf("%1.1f",p->coef); if(p->expn) { printf("*x^%d",p->expn); } if(p->next && p->next->coef > 0) { printf("+"); } p = p->next ; } } PolyNode *Addition(PLinkList L1,PLinkList L2)//多项式的加法 { PolyNode *pa,*pb,*pc,*u,*head; head = (PLinkList)malloc(sizeof(PolyNode)); if(!head) { return NULL; } head->coef = 0.0; head->expn = 0; head->next = NULL; pc = head; L2 = Reverse(L2); pa = L1->next ; pb = L2->next ; while(pa != NULL && pb != NULL) { if(pa->expn == pb->expn) { u = (PLinkList)malloc(sizeof(PolyNode)); if(!u) { return NULL; } u->coef = pa->coef + pb->coef ; u->expn = pa->expn ; pa = pa->next ; pb = pb->next ; u->next = pc->next ; pc->next = u; pc = u; } else if(pa->expn > pb->expn) { u = (PLinkList)malloc(sizeof(PolyNode)); if(!u) { return NULL; } u->coef = pa->coef ; u->expn = pa->expn ; pa = pa->next ; u->next = pc->next ; pc->next = u; pc = u; } else { u = (PLinkList)malloc(sizeof(PolyNode)); if(!u) { return NULL; } u->coef = pb->coef ; u->expn = pb->expn ; pb = pb->next ; u->next = pc->next ; pc->next = u; pc = u; } } L2 = Reverse(L2); return head; } PolyNode *Subtraction(PLinkList L1,PLinkList L2)//多项式的减法 { PolyNode *pa,*pb,*pc,*u,*head; head = (PLinkList)malloc(sizeof(PolyNode)); if(!head) { return NULL; } head->coef = 0.0; head->expn = 0; head->next = NULL; pc = head; pa = L1->next ; pb = L2->next ; while(pa != NULL && pb != NULL) { if(pa->expn == pb->expn) { u = (PLinkList)malloc(sizeof(PolyNode)); if(!u) { return NULL; } u->coef = pa->coef - pb->coef ; u->expn = pa->expn ; pa = pa->next ; pb = pb->next ; u->next = pc->next ; pc->next = u; pc = u; } else if(pa->expn > pb->expn) { u = (PLinkList)malloc(sizeof(PolyNode)); if(!u) { return NULL; } u->coef = pa->coef ; u->expn = pa->expn ; pa = pa->next ; u->next = pc->next ; pc->next = u; pc = u; } else { u = (PLinkList)malloc(sizeof(PolyNode)); if(!u) { return NULL; } u->coef = pb->coef ; u->expn = pb->expn ; pb = pb->next ; u->next = pc->next ; pc->next = u; pc = u; } } return head; } PolyNode *Reverse(PLinkList head)//将生成的链表逆置,使一元多项式呈指数递增形式 { PolyNode *q,*r,*p = NULL; q = head->next ; while(q) { r = q->next ; q->next = p; p = q; q = r; } head->next = p; return head; } PolyNode *MultiplyPolyn(PLinkList L1,PLinkList L2)//多项式的乘法 { PolyNode *pa,*pb,*pc,*u,*head; int k,maxExp; float coef; head = (PLinkList)malloc(sizeof(PolyNode)); if(!head) { return NULL; } head->coef = 0.0; head->expn = 0; head->next = NULL; if(L1->next != NULL && L2->next != NULL) { maxExp = L1->next->expn +L2->next->expn ; } else { return head; } pc = head; L2 = Reverse(L2); for(k = maxExp;k >= 0;k--) { pa = L1->next ; while(pa != NULL && pa->expn > k) { pa = pa->next ; } pb = L2->next ; while(pb != NULL && pa != NULL && pa->expn+pb->expn < k) { pb= pb->next ; } coef = 0.0; while(pa != NULL && pb != NULL) { if(pa->expn +pb->expn == k) { coef += pa->coef *pb->coef ; pa = pa->next ; pb = pb->next ; } else if(pa->expn +pb->expn > k) { pa = pa->next ; } else { pb = pb->next ; } } if(coef != 0.0) { u = (PLinkList)malloc(sizeof(PolyNode)); u->coef = coef; u->expn = k; u->next = pc->next ; pc->next = u; pc = u; } } L2 = Reverse(L2); return head; } #include "test.h" int main(void) { PLinkList A,B,C,D,E; A = CreatePolyn(); printf("A(x) ="); OutPut(A); printf("\n"); B = CreatePolyn(); printf("B(x) ="); OutPut(B); printf("\n"); C = MultiplyPolyn(A,B); printf("C(x) = A(x)*B(x) ="); OutPut(C); printf("\n"); D = Addition(A,B); printf("D(x) = A(x)+B(x) ="); OutPut(D); printf("\n"); E = Subtraction(A,B); printf("E(x) = A(x)-B(x) ="); OutPut(E); printf("\n"); return 0; }
以上是关于一元多项式的表示及加减乘除运算的主要内容,如果未能解决你的问题,请参考以下文章