1.2.4 Palindromic Squares

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了1.2.4 Palindromic Squares相关的知识,希望对你有一定的参考价值。

Palindromes are numbers that read the same forwards as backwards. The number 12321 is a typical palindrome.

Given a number base B (2 <= B <= 20 base 10), print all the integers N (1 <= N <= 300 base 10) such that the square of N is palindromic when expressed in base B; also print the value of that palindromic square. Use the letters ‘A‘, ‘B‘, and so on to represent the digits 10, 11, and so on.

Print both the number and its square in base B.

PROGRAM NAME: palsquare

INPUT FORMAT

A single line with B, the base (specified in base 10).

SAMPLE INPUT (file palsquare.in)

10

OUTPUT FORMAT

Lines with two integers represented in base B. The first integer is the number whose square is palindromic; the second integer is the square itself. NOTE WELL THAT BOTH INTEGERS ARE IN BASE B!

SAMPLE OUTPUT (file palsquare.out)

1 1

2 4

3 9

11 121

22 484

26 676

101 10201

111 12321

121 14641

202 40804

212 44944

264 69696

 

代码:

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 using namespace std;
 5 int main()
 6 {
 7     freopen("palsquare.in","r",stdin);
 8     freopen("palsquare.out","w",stdout);
 9     char m[111],c[111];
10     int n;
11     cin>>n;
12     long long p;
13     for(int i=1;i<=300;i++){
14         p=i*i;
15         int j=0;
16         int b=i;
17         int z=0;
18         while(b){
19             if(b%n<10) c[z++]=b%n+0;
20             else c[z++]=b%n-10+A;
21             b/=n;
22         }
23         while(p){
24             if(p%n<10) m[j++]=p%n+0;
25             else m[j++]=p%n-10+A;
26             p/=n;
27         }
28         int f=1;
29         for(int l=0,k=j-1;l<j;l++,k--){
30             if(m[l]!=m[k]){
31                 f=0;
32                 break;
33             }
34         }
35         if(f) {
36             for(int l=z-1;l>=0;l--) cout<<c[l];
37             cout<<" ";
38             for(int l=j-1;l>=0;l--) cout<<m[l];
39             cout<<endl;
40         }
41     }
42     return 0;
43 }

 

以上是关于1.2.4 Palindromic Squares的主要内容,如果未能解决你的问题,请参考以下文章

USACO 1.2Palindromic Squares

洛谷P1206 [USACO1.2]回文平方数 Palindromic Squares

洛谷 P1206 [USACO1.2]回文平方数 Palindromic Squares

Codeforces 898E Squares and not squares

Longest Palindromic Substring & Longest Palindromic Subsequence

LeetcodePerfect Squares