Codeforces 898E Squares and not squares

Posted Pat

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Codeforces 898E Squares and not squares相关的知识,希望对你有一定的参考价值。

题目大意

给定 $n$($n$ 是偶数,$2\le n\le 2\times 10^{5}$)个非负整数 $a_1,\dots, a_n$($a_i\le 10^9$)。
要求将其中 $n/2$ 个数变成平方数,另外 $n/2$ 个数变成非平方数,变化后的数必须仍是非负整数。
将 $x$ 变成 $x‘$ 的代价为 $|x-x‘|$ 。
求最小的总代价。

比赛时我的思路

用 $c_{i,0}$ 表示将 $a_i$ 变成平方数的最小代价,$c_{i,1}$ 表示将 $a_i$ 变成非平方数的最小代价,不难求出这两个值。
那么问题转化为

从 $c_{1,0}, c_{2,0}, \dots, c_{n,0}$ 和 $c_{1,1}, c_{2,1}, \dots, c_{n,1}$ 中各取出 $n/2$ 个数,限制条件是:$c_{i,0}$ 和 $c_{i,1}$ 不能都取。
求取出的数的最小和。

比赛时我想到这里就进展不下去了。

转化后的问题的解法

对于任意一个合法的取数方案,如果不是最优解,则必然存在 $i, j$ 满足:

  1. $c_{i,0}, c_{j,1}$ 在所取的数中,且
  2. $c_{i,0} + c_{j,1} > c_{i,1} + c_{j,0}$ 。

第二个条件可化为
$c_{i,1} - c_{i,0} < c_{j,1} - c_{j,0}$

这样便得出这个问题的解法:

将下标 $1, 2,\dots,i,\dots, n$ 按 $c_{i,1} - c_{i,0} $ 从小到大排序,对前 $n/2$ 个下标取 $c_{i,1}$,对后 $n/2$ 个下标取 $c_{i,0}$ 。

题解上解法

统计输入的 $n$ 个数中平方数和非平方数的个数,分别记做 $c_0, c_1$。
若 $c_0 = c_1$ 则无需改变。
若 $c_0 > c_1$ 则需要把 $(c_0 - c_1)/2$ 个平方数变成非平方数。对于非零的平方数,加 1 即可,零则须加 2 。所以,优先改变非零的平方数。
若 $c_0 < c_1$ 则需把 $(c_0 - c_1)/2 $ 个非平方数变成平方数。

以上是关于Codeforces 898E Squares and not squares的主要内容,如果未能解决你的问题,请参考以下文章

Codeforces 1099 B. Squares and Segments-思维(Codeforces Round #530 (Div. 2))

Codeforces 994 C - Two Squares

Codeforces Round #332 (Div. 2) D. Spongebob and Squares(枚举)

Codeforces Round #243 (Div. 1)——Sereja and Squares

HDU 1264 Counting Squares(模拟)

POJ 3347 Kadj Squares(计算几何)