算法设计与分析基础10深度优先遍历
Posted cutter_point
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了算法设计与分析基础10深度优先遍历相关的知识,希望对你有一定的参考价值。
package cn.xf.algorithm.ch03; import org.junit.Test; /** * 深度优先遍历 * @author xiaof * */ public class DFS { public void deepFirstSearch(int graph[][], char points[], int marks[]){ //吧所有点设置为0,表示还未访问过 for(int i = 0; i < marks.length; ++i) { marks[i] = 0; } //遍历所有节点,挨个访问 for(int i = 0; i < points.length; ++i) { //判断这个节点没有被访问过 if(marks[i] == 0) { // System.out.println(" => " + key); //表示当前节点已经被遍历 marks[i] = 1; //深度遍历,这里是设置开始的节点 StringBuilder path = new StringBuilder(points[i] + ""); dfsw(graph, points, marks, i, path); System.out.println(path.toString()); } } } //深度遍历 public void dfsw(int graph[][], char points[], int marks[], int curIndex, StringBuilder path){ //遍历其他节点,判断是否相连 for(int i = 0; i < marks.length; ++i) { //遍历序列,并且获取对应的位置index int curNum = graph[curIndex][i]; if(marks[i] == 0 && curNum != 0) { //这个节点还没有被访问过,并且这个节点可达 // System.out.println(" => " + points[i]); path.append(" => " + points[i]); marks[i] = 1; //递归到下一个 dfsw(graph, points, marks, i, path); } } } @Test public void test1(){ DFS dfs = new DFS(); //a,b,c,d,e,f,g,h,i,j一共10个节点,两颗树 //以下是矩阵图,0表示不相连,1表示相连,节点本身自己到自己为0 int graph[][] = { // a,b,c,d,e,f,g,h,i,j {0,0,1,1,1,0,0,0,0,0}, //a 到其他节点 {0,0,0,0,1,1,0,0,0,0}, //b 到其他节点 {1,0,0,1,0,1,0,0,0,0}, //c 到其他节点 {1,0,1,0,0,0,0,0,0,0}, //d 到其他节点 {1,1,0,0,0,1,0,0,0,0}, //e 到其他节点 {0,1,1,0,1,0,0,0,0,0}, //f 到其他节点 {0,0,0,0,0,0,0,1,0,1}, //g 到其他节点 {0,0,0,0,0,0,1,0,1,0}, //h 到其他节点 {0,0,0,0,0,0,0,1,0,1}, //i 到其他节点 {0,0,0,0,0,0,1,0,1,0} //j 到其他节点 }; char points[] = {\'A\', \'B\', \'C\', \'D\', \'E\', \'F\', \'G\', \'H\', \'I\', \'J\'}; int marks[] = {0,0,0,0,0,0,0,0,0,0}; dfs.deepFirstSearch(graph, points, marks); } }
结果:
以上是关于算法设计与分析基础10深度优先遍历的主要内容,如果未能解决你的问题,请参考以下文章