BZOJ2982combination Lucas定理

Posted CQzhangyu

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了BZOJ2982combination Lucas定理相关的知识,希望对你有一定的参考价值。

【BZOJ2982】combination

Description

LMZn个不同的基友,他每天晚上要选m个进行[河蟹],而且要求每天晚上的选择都不一样。那么LMZ能够持续多少个这样的夜晚呢?当然,LMZ的一年有10007天,所以他想知道答案mod 10007的值。(1<=m<=n<=200,000,000)

Input

  第一行一个整数t,表示有t组数据。(t<=200)
  接下来t行每行两个整数n, m,如题意。

Output

T行,每行一个数,为C(n, m) mod 10007的答案。

Sample Input

4
5 1
5 2
7 3
4 2

Sample Output

5
10
35
6

题解百度:lucas定理

 

#include <cstdio>
#include <cstring>
#include <iostream>
#define mod 10007
using namespace std;
int n,jc[10010],jcc[10010];
int pm(int x,int y)
{
	int z=1;
	while(y)
	{
		if(y&1)	z=z*x%mod;
		x=x*x%mod,y>>=1;
	}
	return z;
}
int dfs(int x,int y)
{
	if(!y)	return 1;
	if(x<y)	return 0;
	if(x<mod&&y<mod)	return jc[x]*jcc[y]%mod*jcc[x-y]%mod;
	return dfs(x/mod,y/mod)*dfs(x%mod,y%mod)%mod;
}
int main()
{
	scanf("%d",&n);
	int i,a,b;
	for(i=1,jc[0]=jcc[0]=1;i<=10007;i++)	jc[i]=jc[i-1]*i%mod,jcc[i]=pm(jc[i],mod-2);
	for(i=1;i<=n;i++)
	{
		scanf("%d%d",&a,&b);
		printf("%d\n",dfs(a,b));
	}
	return 0;
}

以上是关于BZOJ2982combination Lucas定理的主要内容,如果未能解决你的问题,请参考以下文章

BZOJ2982combination Lucas定理

组合数学lucas定理 BZOJ2982 combination

bzoj2982: combination(lucas)

BZOJ 2982 combination Lucas定理

BZOJ 2982 combination

bzoj 2982 combination