图像处理与机器学习(验证码的识别)

Posted 树的种子

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了图像处理与机器学习(验证码的识别)相关的知识,希望对你有一定的参考价值。

这个东西,从放寒假的前一天,老师叫我做起,已经快2个月了,开学一个星期后,在陈老师的督促下,算是做的差不多了。

这个的应用领域主要是自动化程序,验证码可以说是网络安全的一道防火墙,自动化程序的难点。

但是,对于这个图像识别这个技术来说,还远远不够,至于应用的角度,更是狭窄,因此这不是一个终点,恰恰是一个起点。

 

机器学习有监督学习和无监督学习两种;我这里是监督学习,当然就得我手动的写每一张验证码的正确值了。

 

语言:   python

工具:   opencv

 

总体思路:样本学习,测试;

1、样本学习:

  •   首先要对样本去噪,去噪将干扰线删除,对于一个像素点来说,他的四周的其余的点,有5个,或者较多的像素点是空白,那么将可以判断他是噪点,而将他删除掉。
  •   扭曲矫正,我这里的扭曲矫正,是片面的,真正是很难有较好的效果,对于不同的验证码,有不同的特点,有一些验证码的产生,就有这样的特点,角落处,有阴影,这使得字符有扭曲,根据这里,来实现不同程度的扭曲矫正。
  •       切割图像,将每个字符切割下来,这里也是相对的了,粘连较严重即将影响字符的正确。
  •       二进制化图像,是字符的地方是0,没有的地方是1(这里相反没有问题)。生成训练集。
  •       训练模型制作,字符,二进制的像素点,joblib持久化保存,将模型保存到本地,进行预测,速度更快。
  •       通过随机森林算法将样本数据训练。


2、测试:

  •   测试的步骤和学习的步骤类似。
  •       通过训练模型得到的分类结果计算正确率。

最后识别率在100%

以上是关于图像处理与机器学习(验证码的识别)的主要内容,如果未能解决你的问题,请参考以下文章

精选文章 | 机器学习在图形验证码识别上的应用

向量空间验证码识别

机器学习算法·KNN

机器学习项目实战识别mnist数据集识别图片数字

用Python机器学习搞定验证码

用Python机器学习搞定验证码