SVM学习笔记5-SMO
Posted Only the Strong Survive
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了SVM学习笔记5-SMO相关的知识,希望对你有一定的参考价值。
首先拿出最后要求解的问题:$\\underset{\\alpha}{min}W(\\alpha)=\\frac{1}{2} \\sum_{i,j=1}^{n}y^{(i)}y^{(j)}\\alpha_{i}\\alpha_{j}k_{ij}-\\sum_{i=1}^{n}\\alpha_{i}$,使得满足:
(1)$0 \\leq \\alpha_{i}\\leq C,1 \\leq i \\leq n$
(2)$\\sum_{i=1}^{n}\\alpha_{i}y^{(i)}=0$
求解的策略是每次选出两个$\\alpha$进行更新。比如选取的是$\\alpha_{1},\\alpha_{2}$。由于$\\sum_{i=1}^{n}\\alpha_{i}y^{(i)}=0$,所以$\\alpha_{1}y^{(1)}+\\alpha_{2}y^{(2)}=-\\sum_{i=3}^{n}\\alpha_{i}y^{(i)}$。等号右侧是一个常数,设为$\\xi$。当$y^{(1)}$和$y^{(2)}$异号时,有$\\alpha_{1}-\\alpha_{2}=\\xi$或者$\\alpha_{2}-\\alpha_{1}=\\xi$。同时它们还要满足$0\\leq \\alpha \\leq C$。
我们设$\\alpha_{2}$的合法区间为[L,R],那么此时有$L=max(0,\\alpha_{2}-\\alpha_{1}),R=min(C,C+\\alpha_{2}-\\alpha_{1})$。同理当$y^{(1)}$和$y^{(2)}$同号时有$L=max(0,\\alpha_{2}+\\alpha_{1}-C),R=min(C,\\alpha_{2}+\\alpha_{1})$。
首先定义$u=w^{T}x+b$
将$\\alpha_{1},\\alpha_{2}$带入$W(\\alpha)$中得到:
$W(\\alpha)=\\frac{1}{2}(k_{11}\\alpha_{1}^{2}+k_{22}\\alpha_{2}^{2})+sk_{12}\\alpha_{1}\\alpha_{2}+y^{(1)}\\alpha_{1}v_{1}+y^{(2)}\\alpha_{2}v_{2}-\\alpha_{1}-\\alpha_{2}+P$
其中:
(1)$s=y^{(1)}y^{(2)}$
(2)$v_{1}=\\sum_{i=3}^{n}y^{(i)}\\alpha_{i}k_{1i}=u_{1}-b-y^{(1)}\\alpha_{1}^{old}k_{11}-y^{(2)}\\alpha_{2}^{old}k_{12}$
(3)$v_{2}=\\sum_{i=3}^{n}y^{(i)}\\alpha_{i}k_{2i}=u_{2}-b-y^{(1)}\\alpha_{1}^{old}k_{12}-y^{(2)}\\alpha_{2}^{old}k_{22}$
由于$y^{(1)}\\alpha_{1}+y^{(2)}\\alpha_{2}=y^{(1)}\\alpha_{1}^{old}+y^{(2)}\\alpha_{2}^{old}=\\xi$
两边同时乘以$y^{(1)}$,得到$\\alpha_{1}+s\\alpha_{2}=\\alpha_{1}^{old}+s\\alpha_{2}^{old}=y^{(1)}\\xi=T$
所以$\\alpha_{1}=T-s\\alpha_{2}$,将其带入$W(\\alpha)$,得到$W(\\alpha)=\\frac{1}{2}(k_{11}(T-s\\alpha_{2})^{2}+k_{22}\\alpha_{2}^{2})+sk_{12}(T-s\\alpha_{2})\\alpha_{2}+y^{(1)}(T-s\\alpha_{2})v_{1}+y^{(2)}\\alpha_{2}v_{2}-(T-s\\alpha_{2})-\\alpha_{2}+P$
其实这是一个关于$\\alpha_{2}$的二次函数,在一阶导数等于0的地方取得最小值,一阶导数为:$\\frac{\\partial W}{\\partial \\alpha_{2}}=-sk_{11}(T-s\\alpha_{2})+k_{22}\\alpha_{2}+sk_{12}(T-s\\alpha_{2})-k_{12}\\alpha_{2}-y^{(2)}v_{1}+y^{(2)}v_{2}+s-1=0$
移项得:$\\alpha_{2}(k_{11}+k_{22}-2k_{12})=s(k_{11}-k_{12})T+y^{(2)}(v_{1}-v_{2})+1-s$
将$v_{1},v_{2}$带入得:$\\alpha_{2}(k_{11}+k_{22}-2k_{12})=\\alpha_{2}^{old}(k_{11}+k_{22}-2k_{12})+y^{(2)}(u_{1}-u_{2}+y^{(2)}-y^{(1)})$
令:
(1)$\\eta =k_{11}+k_{22}-2k_{12}$
(2)$E_{1}=u_{1}-y^{(1)}$
(3)$E_{2}=u_{2}-y^{(2)}$
那么有:
$\\alpha_{2}^{new}=\\alpha_{2}^{old}+\\frac{y^{(2)}(E_{1}-E_{2})}{\\eta }$
这里就求出了新的$\\alpha_{2}$。需要注意的是如果$\\alpha_{2}$不在上面求出的[L,R]区间,要做一下裁剪。
由$y^{(1)}\\alpha_{1}+y^{(2)}\\alpha_{2}=y^{(1)}\\alpha_{1}^{old}+y^{(2)}\\alpha_{2}^{old}$可得:
$\\alpha_{1}^{new}=\\alpha_{1}^{old}+y^{(1)}y^{(2)}(\\alpha_{2}^{old}-\\alpha_{2}^{new})$
最后更新b
$b=\\left\\{\\begin{matrix} b_{1} & 0<\\alpha_{1}<C\\\\
b_{2} & 0<\\alpha_{2}<C\\\\
\\frac{1}{2}(b_{1}+b_{2}) & other
\\end{matrix}\\right.$
其中
$b_{1}=b-E_{1}-y^{(1)}(\\alpha_{1}^{new}-\\alpha_{1}^{old})k_{11}-y^{(2)}(\\alpha_{2}^{new}-\\alpha_{2}^{old})k_{12}$
$b_{2}=b-E_{2}-y^{(1)}(\\alpha_{1}^{new}-\\alpha_{1}^{old})k_{12}-y^{(2)}(\\alpha_{2}^{new}-\\alpha_{2}^{old})k_{22}$
这样更新b会迫使输入$x_{1}$时输出$y^{(1)}$,输入$x_{2}$时输出$y^{(2)}$
from numpy import * import operator from time import sleep import numpy as np; from svmplatt import *; import matplotlib.pyplot as plt class PlattSVM(object): def __init__(self): self.X = [] self.labelMat = [] self.C = 0.0 self.tol = 0.0 self.b = 0.0 self.kValue=0.0 self.maxIter=10000 self.svIndx=[] self.sptVects=[] self.SVlabel=[] def loadDataSet(self,fileName): fr = open(fileName) for line in fr.readlines(): lineArr = line.strip().split(\'\\t\') self.X.append([float(lineArr[0]), float(lineArr[1])]) self.labelMat.append(float(lineArr[2])) self.initparam() def kernels(self,dataMat,A): m,n=shape(dataMat) K=mat(zeros((m,1))) for j in range(m): delta=dataMat[j,:]-A K[j]=delta*delta.T K=exp(K/-1*self.kValue**2) return K def initparam(self): self.X = mat(self.X) self.labelMat = mat(self.labelMat).T self.m = shape(self.X)[0] self.lambdas = mat(zeros((self.m,1))) self.eCache = mat(zeros((self.m,2))) self.K = mat(zeros((self.m,self.m))) for i in range(self.m): self.K[:,i] = self.kernels(self.X,self.X[i,:]) def randJ(self,i): j=i while(j==i): j = int(random.uniform(0,self.m)) return j def clipLambda(self,aj,H,L): if aj > H: aj = H if L > aj: aj = L return aj def calcEk(self,k): return float(multiply(self.lambdas,self.labelMat).T*self.K[:,k] + self.b) - float(self.labelMat[k]) def chooseJ(self,i,Ei): maxK = -1; maxDeltaE = 0; Ej = 0 self.eCache[i] = [1,Ei] validEcacheList = nonzero(self.eCache[:,0].A)[0] if (len(validEcacheList)) > 1: for k in validEcacheList: if k == i: continue Ek = self.calcEk(k) deltaE = abs(Ei - Ek) if (deltaE > maxDeltaE): maxK = k; maxDeltaE = deltaE; Ej = Ek return maxK, Ej else: j = self.randJ(i) Ej = self.calcEk(j) return j, Ej def innerLoop(self,i): Ei = self.calcEk(i) if ((self.labelMat[i]*Ei < -self.tol) and (self.lambdas[i] < self.C)) or ((self.labelMat[i]*Ei > self.tol) and (self.lambdas[i] > 0)): j,Ej = self.chooseJ(i, Ei) lambdaIold = self.lambdas[i].copy(); lambdaJold = self.lambdas[j].copy(); if (self.labelMat[i] != self.labelMat[j]): L = max(0, self.lambdas[j] - self.lambdas[i]) H = min(self.C, self.C + self.lambdas[j] - self.lambdas[i]) else: L = max(0, self.lambdas[j] + self.lambdas[i] - self.C) H = min(self.C, self.lambdas[j] + self.lambdas[i]) if L==H: return 0 eta = 2.0 * self.K[i,j] - self.K[i,i] - self.K[j,j] if eta >= 0: return 0 self.lambdas[j] -= self.labelMat[j]*(Ei - Ej)/eta self.lambdas[j] = self.clipLambda(self.lambdas[j],H,L) self.eCache[j] = [1,self.calcEk(j)] if (abs(self.lambdas[j] - lambdaJold) < 0.00001): return 0 self.lambdas[i] += self.labelMat[j]*self.labelMat[i]*(lambdaJold - self.lambdas[j]) self.eCache[i] = [1,self.calcEk(i)] b1 = self.b - Ei- self.labelMat[i]*(self.lambdas[i]-lambdaIold)*self.K[i,i] - self.labelMat[j]*(self.lambdas[j]-lambdaJold)*self.K[i,j] b2 = self.b - Ej- self.labelMat[i]*(self.lambdas[i]-lambdaIold)*self.K[i,j] - self.labelMat[j]*(self.lambdas[j]-lambdaJold)*self.K[j,j] if (0 < self.lambdas[i]) and (self.C > self.lambdas[i]): self.b = b1 elif (0 < self.lambdas[j]) and (self.C > self.lambdas[j]): self.b = b2 else: self.b = (b1 + b2)/2.0; return 1 else: return 0 def train(self): #full Platt SMO step = 0 entireflag = True; lambdaPairsChanged = 0 while (step < self.maxIter) and ((lambdaPairsChanged > 0) or (entireflag)): lambdaPairsChanged = 0 if entireflag: for i in range(self.m): lambdaPairsChanged += self.innerLoop(i) step += 1 else: nonBoundIs = nonzero((self.lambdas.A > 0) * (self.lambdas.A < self.C))[0] for i in nonBoundIs: lambdaPairsChanged += self.innerLoop(i) step += 1 if entireflag: entireflag = False elif (lambdaPairsChanged == 0): entireflag = True self.svIndx = nonzero(self.lambdas.A>0)[0] self.sptVects = self.X[self.svIndx] self.SVlabel = self.labelMat[self.svIndx] def scatterplot(self,plt): fig = plt.figure() ax = fig.add_subplot(111) for i in range(shape(self.X)[0]): if self.lambdas[i] != 0: ax.scatter(self.X[i,0],self.X[i,1],c=\'green\',marker=\'s\',s=50) elif self.labelMat[i] == 1: ax.scatter(self.X[i,0],self.X[i,1],c=\'blue\',marker=\'o\') elif self.labelMat[i] == -1: ax.scatter(self.X[i,0],self.X[i,1],c=\'red\',marker=\'o\') svm = PlattSVM() svm.C=70 svm.tol=0.001 svm.maxIter=2000 svm.kValue= 3.0 svm.loadDataSet(\'nolinear.txt\') svm.train() print(svm.svIndx) print(shape(svm.sptVects)[0]) print("b:",svm.b) svm.scatterplot(plt) plt.show()
实验结果
以上是关于SVM学习笔记5-SMO的主要内容,如果未能解决你的问题,请参考以下文章