float浮点数的二进制存储方式及转换
Posted limeOracle
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了float浮点数的二进制存储方式及转换相关的知识,希望对你有一定的参考价值。
int和float都是4字节32位表示形式。为什么float的范围大于int?
float精度为6~7位。1.66*10^10的数字结果并不是166 0000 0000 指数越大,误差越大。
这些问题,都是浮点数的存储方式造成的。
float和double在存储方式上都是遵从IEEE的规范的,float遵从的是IEEE R32.24 ,而double 遵从的是R64.53。
无论是单精度还是双精度在存储中都分为三个部分:
- 符号位(Sign) : 0代表正,1代表为负
- 指数位(Exponent):用于存储科学计数法中的指数数据,并且采用移位存储
- 尾数部分(Mantissa):尾数部分
其中float的存储方式如下图所示:
而双精度的存储方式为:
将一个float型转化为内存存储格式的步骤为: (1)先将这个实数的绝对值化为二进制格式。 (2)将这个二进制格式实数的小数点左移或右移n位,直到小数点移动到第一个有效数字的右边。 (3)从小数点右边第一位开始数出二十三位数字放入第22到第0位。 (4)如果实数是正的,则在第31位放入“0”,否则放入“1”。 (5)如果n 是左移得到的,说明指数是正的,第30位放入“1”。如果n是右移得到的或n=0,则第30位放入“0”。 (6)如果n是左移得到的,则将n减去1后化为二进制,并在左边加“0”补足七位,放入第29到第23位。
如果n是右移得到的或n=0,则将n化为二进制后在左边加“0”补足七位,再各位求反,再放入第29到第23位。
R32.24和R64.53的存储方式都是用科学计数法来存储数据的,比如8.25用十进制的科学计数法表示就为:8.25*,而120.5可以表示为:1.205*,计算机根本不认识十进制的数据,他只认识0,1,所以在计算机存储中,首先要将上面的数更改为二进制的科学计数法表示,8.25用二进制表示可表示为1000.01,120.5用二进制表示为:1110110.1用二进制的科学计数法表示1000.01可以表示为1.0001*,1110110.1可以表示为1.1101101*,任何一个数都的科学计数法表示都为1.xxx*,尾数部分就可以表示为xxxx,第一位都是1嘛,干嘛还要表示呀?可以将小数点前面的1省略,所以23bit的尾数部分,可以表示的精度却变成了24bit,道理就是在这里,那24bit能精确到小数点后几位呢,我们知道9的二进制表示为1001,所以4bit能精确十进制中的1位小数点,24bit就能使float能精确到小数点后6位,而对于指数部分,因为指数可正可负,8位的指数位能表示的指数范围就应该为:-127-128了,所以指数部分的存储采用移位存储,存储的数据为元数据+127,下面就看看8.25和120.5在内存中真正的存储方式。
首先看下8.25,用二进制的科学计数法表示为:1.0001*
按照上面的存储方式,符号位为:0,表示为正,指数位为:3+127=130 ,位数部分为,故8.25的存储方式如下图所示:
而单精度浮点数120.5的存储方式如下图所示:
将一个内存存储的float二进制格式转化为十进制的步骤: (1)将第22位到第0位的二进制数写出来,在最左边补一位“1”,得到二十四位有效数字。将小数点点在最左边那个“1”的右边。 (2)取出第29到第23位所表示的值n。当30位是“0”时将n各位求反。当30位是“1”时将n增1。 (3)将小数点左移n位(当30位是“0”时)或右移n位(当30位是“1”时),得到一个二进制表示的实数。 (4)将这个二进制实数化为十进制,并根据第31位是“0”还是“1”加上正号或负号即可。
那么如果给出内存中一段数据,并且告诉你是单精度存储的话,你如何知道该数据的十进制数值呢?其实就是对上面的反推过程,比如给出如下内存数据:0100001011101101000000000000,首先我们现将该数据分段,0 10000 0101 110 1101 0000 0000 0000 0000,在内存中的存储就为下图所示:
根据我们的计算方式,可以计算出,这样一组数据表示为:1.1101101*=120.5
而双精度浮点数的存储和单精度的存储大同小异,不同的是指数部分和尾数部分的位数。所以这里不再详细的介绍双精度的存储方式了,只将120.5的最后存储方式图给出,大家可以仔细想想为何是这样子的
下面我就这个基础知识点来解决一个我们的一个疑惑,请看下面一段程序,注意观察输出结果
float f = 2.2f;
double d = (double)f;
Console.WriteLine(d.ToString("0.0000000000000"));
f = 2.25f;
d = (double)f;
Console.WriteLine(d.ToString("0.0000000000000"));
可能输出的结果让大家疑惑不解,单精度的2.2转换为双精度后,精确到小数点后13位后变为了2.2000000476837,而单精度的2.25转换为双精度后,变为了2.2500000000000,为何2.2在转换后的数值更改了而2.25却没有更改呢?很奇怪吧?其实通过上面关于两种存储结果的介绍,我们已经大概能找到答案。首先我们看看2.25的单精度存储方式,很简单 0 1000 0001 001 0000 0000 0000 0000 0000,而2.25的双精度表示为:0 100 0000 0001 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000,这样2.25在进行强制转换的时候,数值是不会变的,而我们再看看2.2呢,2.2用科学计数法表示应该为:将十进制的小数转换为二进制的小数的方法为将小数*2,取整数部分,所以0.282=0.4,所以二进制小数第一位为0.4的整数部分0,0.4×2=0.8,第二位为0,0.8*2=1.6,第三位为1,0.6×2 = 1.2,第四位为1,0.2*2=0.4,第五位为0,这样永远也不可能乘到=1.0,得到的二进制是一个无限循环的排列 00110011001100110011... ,对于单精度数据来说,尾数只能表示24bit的精度,所以2.2的float存储为:
但是这样存储方式,换算成十进制的值,却不会是2.2的,应为十进制在转换为二进制的时候可能会不准确,如2.2,而double类型的数据也存在同样的问题,所以在浮点数表示中会产生些许的误差,在单精度转换为双精度的时候,也会存在误差的问题,对于能够用二进制表示的十进制数据,如2.25,这个误差就会不存在,所以会出现上面比较奇怪的输出结果。
附注:
小数的二进制表示问题 首先我们要搞清楚下面两个问题: (1) 十进制整数如何转化为二进制数 算法很简单。举个例子,11表示成二进制数: 11/2=5 余 1 5/2=2 余 1 2/2=1 余 0 1/2=0 余 1 0结束 11二进制表示为(从下往上):1011 这里提一点:只要遇到除以后的结果为0了就结束了,大家想一想,所有的整数除以2是不是一定能够最终得到0。
换句话说,所有的整数转变为二进制数的算法会不会无限循环下去呢?绝对不会,整数永远可以用二进制精确表示 ,但小数就不一定了。 (2) 十进制小数如何转化为二进制数 算法是乘以2直到没有了小数为止。举个例子,0.9表示成二进制数 0.9*2=1.8 取整数部分 1 0.8(1.8的小数部分)*2=1.6 取整数部分 1 0.6*2=1.2 取整数部分 1 0.2*2=0.4 取整数部分 0 0.4*2=0.8 取整数部分 0 0.8*2=1.6 取整数部分 1 0.6*2=1.2 取整数部分 0 ......... 0.9二进制表示为(从上往下): 1100100100100...... 注意:上面的计算过程循环了,也就是说*2永远不可能消灭小数部分,这样算法将无限下去。很显然,小数的二进制表示有时是不可能精确的 。
其实道理很简单,十进制系统中能不能准确表示出1/3呢?同样二进制系统也无法准确表示1/10。这也就解释了为什么浮点型减法出现了"减不尽"的精度丢失问题。
以上是关于float浮点数的二进制存储方式及转换的主要内容,如果未能解决你的问题,请参考以下文章