判断两条线段是否相交
Posted HONT blog
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了判断两条线段是否相交相关的知识,希望对你有一定的参考价值。
之前一篇文章里写了一种差乘判断方法:http://www.cnblogs.com/hont/p/6105997.html
虽然用3D空间的差乘,但是只适用于2D空间
bool IsIntersection(Vector3 a, Vector3 b, Vector3 c, Vector3 d) { var crossA = Mathf.Sign(Vector3.Cross(d - c, a - c).y); var crossB = Mathf.Sign(Vector3.Cross(d - c, b - c).y); if (Mathf.Approximately(crossA, crossB)) return false; var crossC = Mathf.Sign(Vector3.Cross(b - a, c - a).y); var crossD = Mathf.Sign(Vector3.Cross(b - a, d - a).y); if (Mathf.Approximately(crossC, crossD)) return false; return true; }
后来我找到了另一个封装好的函数,不仅可以判断相交而且能查到是否相交于虚交点,是否平行等等。
原版的编写语言是java,但出处弄丢了
以下是我修改的Unity版本:
public static int GetIntersection(Vector3 a, Vector3 b, Vector3 c, Vector3 d, out Vector3 contractPoint) { contractPoint = new Vector3(0, 0); if (Mathf.Abs(b.z - a.z) + Mathf.Abs(b.x - a.x) + Mathf.Abs(d.z - c.z) + Mathf.Abs(d.x - c.x) == 0) { if ((c.x - a.x) + (c.z - a.z) == 0) { //Debug.Log("ABCD是同一个点!"); } else { //Debug.Log("AB是一个点,CD是一个点,且AC不同!"); } return 0; } if (Mathf.Abs(b.z - a.z) + Mathf.Abs(b.x - a.x) == 0) { if ((a.x - d.x) * (c.z - d.z) - (a.z - d.z) * (c.x - d.x) == 0) { //Debug.Log("A、B是一个点,且在CD线段上!"); } else { //Debug.Log("A、B是一个点,且不在CD线段上!"); } return 0; } if (Mathf.Abs(d.z - c.z) + Mathf.Abs(d.x - c.x) == 0) { if ((d.x - b.x) * (a.z - b.z) - (d.z - b.z) * (a.x - b.x) == 0) { //Debug.Log("C、D是一个点,且在AB线段上!"); } else { //Debug.Log("C、D是一个点,且不在AB线段上!"); } return 0; } if ((b.z - a.z) * (c.x - d.x) - (b.x - a.x) * (c.z - d.z) == 0) { //Debug.Log("线段平行,无交点!"); return 0; } contractPoint.x = ((b.x - a.x) * (c.x - d.x) * (c.z - a.z) - c.x * (b.x - a.x) * (c.z - d.z) + a.x * (b.z - a.z) * (c.x - d.x)) / ((b.z - a.z) * (c.x - d.x) - (b.x - a.x) * (c.z - d.z)); contractPoint.z = ((b.z - a.z) * (c.z - d.z) * (c.x - a.x) - c.z * (b.z - a.z) * (c.x - d.x) + a.z * (b.x - a.x) * (c.z - d.z)) / ((b.x - a.x) * (c.z - d.z) - (b.z - a.z) * (c.x - d.x)); if ((contractPoint.x - a.x) * (contractPoint.x - b.x) <= 0 && (contractPoint.x - c.x) * (contractPoint.x - d.x) <= 0 && (contractPoint.z - a.z) * (contractPoint.z - b.z) <= 0 && (contractPoint.z - c.z) * (contractPoint.z - d.z) <= 0) { //Debug.Log("线段相交于点(" + contractPoint.x + "," + contractPoint.z + ")!"); return 1; // \'相交 } else { //Debug.Log("线段相交于虚交点(" + contractPoint.x + "," + contractPoint.z + ")!"); return -1; // \'相交但不在线段上 } }
以上是关于判断两条线段是否相交的主要内容,如果未能解决你的问题,请参考以下文章