两条线段间的位置 (叉积)
Posted 萌新上路
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了两条线段间的位置 (叉积)相关的知识,希望对你有一定的参考价值。
两条线段共有三种相对位置,平行,相交和重合,题目如果给出两条线段端点坐标,然后判断这两条线段的相对位置,如果是相交还要算出交点坐标。
可以用叉积来做,将两条线段看做两条向量
平行就是这两条向量的叉积为0
重合就是他们首尾连接的向量与其中某条向量的叉积也为0
//先判断两条线段是否不平行(最好同时判断是否有交点并且不平行,因为浮点运算不精确),然后计算两条线段的交点。以下是C语言代码: #include<stdio.h> #include<math.h> #define eps 1e-8 //精度,因为浮点数运算不精确 #define zero(x) (((x)>0?(x):-(x))<eps) struct point { double x,y; }; //计算交叉乘积(P1-P0)x(P2-P0) double xmult(point p1,point p2,point p0) { return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y); } //判点是否在线段上,包括端点 int dot_online_in(point p,point l1,point l2) { return zero(xmult(p,l1,l2))&&(l1.x-p.x)*(l2.x-p.x)<eps&&(l1.y-p.y)*(l2.y-p.y)<eps; } //判两点在线段同侧,点在线段上返回0 int same_side(point p1,point p2,point l1,point l2) { return xmult(l1,p1,l2)*xmult(l1,p2,l2)>eps; } //判两直线平行 int parallel(point u1,point u2,point v1,point v2) { return zero((u1.x-u2.x)*(v1.y-v2.y)-(v1.x-v2.x)*(u1.y-u2.y)); } //判三点共线 int dots_inline(point p1,point p2,point p3) { return zero(xmult(p1,p2,p3)); } //判两线段相交,包括端点和部分重合 int intersect_in(point u1,point u2,point v1,point v2) { if (!dots_inline(u1,u2,v1)||!dots_inline(u1,u2,v2)) return !same_side(u1,u2,v1,v2)&&!same_side(v1,v2,u1,u2); return dot_online_in(u1,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(v1,u1,u2)||dot_online_in(v2,u1,u2); } //计算两线段交点,请判线段是否相交(同时还是要判断是否平行!) point intersection(point u1,point u2,point v1,point v2) { point ret=u1; double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x)) /((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x)); ret.x+=(u2.x-u1.x)*t; ret.y+=(u2.y-u1.y)*t; return ret; } int main(void) { point u1,u2,v1,v2,ans; printf("请输入线段1的两个端点:\n"); scanf("%lf%lf%lf%lf",&u1.x,&u1.y,&u2.x,&u2.y); printf("请输入线段2的两个端点:\n"); scanf("%lf%lf%lf%lf",&v1.x,&v1.y,&v2.x,&v2.y); if (parallel(u1,u2,v1,v2)||!intersect_in(u1,u2,v1,v2)) { printf("无交点!\n"); } else { ans=intersection(u1,u2,v1,v2); printf("交点为:(%lf,%lf)",ans.x,ans.y); } return 0; }
以上是关于两条线段间的位置 (叉积)的主要内容,如果未能解决你的问题,请参考以下文章